
I AO-A08A 202 TECHNOLOGY SERVICE CORP SANTA MONICA CALIF F/G 17/9
GRAM-SCHMIDT ADAPTIVE ALGORITHMS. CU)

UC MAR 80 W C LILES, .J W DEMMEL, L E BRENNAN F30602-7B-C-0271

UNCLASSIFIED TSC-POB61-1 RADC-TR-79-319 N

IuuuuuuuMubrn

.-El...-

1 Il 1112.2

111 1 -25 11112 .2

1 11112 1.4

4 46

MICRD)PY RESOLUIION TEST CHART
N ' 61't4 ' 'lv A 1 b ANT &6D , ,

RADC-TR-79-319
Final Tednical Report

March 1980

GRAM-SCHMIDT ADAPTIVE ALGORITHMS
Technology Service Corporation

William C. Liles
James W. Demuel
Lawrence E. Brennan

[APPROVED FOR PUBLIC RELEASE; DISTRIBUTON UNLIMITED

ROME AIR DEVELOPMENT CENTER
.. , Air ForceSystems Command

, _. Griffiss Air Force Base.. Now York 13441

',I N80 5 14 071

This report has been reviewed by the RADC Public Affairs Office (PA)

and is releasable to the National Technical Information Service (NTIS).

At NTIS it will be releasable to the general public, including foreign
nations.

RADC-TR-79-319 has been reviewed and is approved for publication.

APPROVED: LA"

VINCENT C. VANNICOLA
Project Engineer

APPROVED: ~ ~ .P%

FRANK J. REHM
Technical Director
Surveillance Division

FOR THE COMMANDER/ 2 '

JOHN P. HUSS
Acting Chief, Plans Office

If your address has been changed or if iou wish to be removed from the RADC
mailing list, or if the addressee is no longer employed by your organiza-

tion, please notify RADC (OCTS), Griffiss AFB NY 13441. This will assist
us in maintaining a current mailing list.

Do not retufn this copy. Retain or destroy.

UNCLASSIFIED

SECURITYVCtSSIFICATION OF THIS PAGE (When Det tFnr d)i • REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
, BEFORF, COMPLETING FORMREP " 2VT ACCESSION No. 3, RECIPIENT'S CATALOG NUMBERJ.) C R79-3l9\

......... F in alechni al,,WeGRAM-, CHIDT ADAPTIVE. WUORITHMS,: 8 Sep" 78.-8 S ep 79s, ...

j TSC-PD-B618-17 -R

:]...AMi 99e W -. O.9 CONTR .T OR GRANT NUMBER(s)

William C./Xiles \ /2
James W./DemmelQf-
Lawrence E./Brennan !

a' W.&NIIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

~Thnolo Service Corporation AREA & WORK UNIT NUMOERS

2811 Wilshire Boulevard
Santa Monica CA 90403 T" _ _ _/

II. CONTROLLNbGOFFe Cy NAME AND ADDRESS
Rome Air Development Center (OCTS) L .r0
Griffiss AFB NY 13441 UMBEROF PAGES .-

14. MONITORING AGENCY NAM A ADODRES(II different from Controlling Ollice) 15 SECURITY CLASS. (oC r' t)

Same UNCLASSIFIED

IS.. DECLASSIFICATION DOWNGRADING

N/PACNEOULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

Same

IS. SUPPLEMENTARY NOTES

RADC Project Engineer: Vincent C. Vannicola (OCTS)

19. KEY WORDS (Continue on reverse d If neceeeary aid identify by block number)

Unive sal adaptive algorithm (UAA)
Gram-Schmidt orthogonalization
Systems of linear equations
Parallel/pipeline architectures
Adaptive signal processing

20. A TRACT (Continue on reverse ide If neceeary atd Identify by block nuber)

We consider solutions to the problem of computing adaptive weights
in real time to maximize the signal-to-noise ratio of a multichannel

input radar system with a large number of weights. The algorithms con-
sidered are based on the Gram-Schmidt orthogonalization process, and ma
be implemented on a modular multiprocessor computer using both parallel
and pipeline techniques. The implementations are based on a simply and
regularly connected processor array with simple and identical processor

DD I 7A,) 1473 EDITION Of I NOVA s OBSOLETE UNCLASSIFIED ,uo.,'

SECURITY CLASSIFICATION OF THIS PAGE (When Det. Entered)

A/

4 UNCLASSIFIED

SECURITY CLASSIFICATION Of THIS PAGE(*7h.n Dals Entered)

Item 20 (Cont'd)

(universal adaptive elements). The implementations can be made fast,

fault tolerant, and easy to maintain.

UNCLASSIFIED

SECURITY CLASSIFICA1IOW OF '"1 PAGEW1.n 00M. Enteod)

A!

EVALUATION

The significance of this contractual effort is the realization

of generating a large number of adaptive weights simultaneously over

more than one domain for radar systems. Such efforts will eventually
render fully adaptive radar systems feasible. The effort supports

RADC Technology Plan, TPO R4B, by providing a technical basis for
adaptive radar operation in a hostile and interfering electromagnetic
environment. The results derived herein will serve as a basis for
using universally designed adaptive modules to solve the large array
multidomain problems.

VINCENT C. VANNICOLA

Project Engineer

Accession For

NTIS SiAfI
DDC TA!
Un sJL ou c P d 0just. if jcattion-

Di st zpoc ...l

i.

-- pec a-1

CONTENTS

LIST OF FIGURES ... 3

LIST OF TABLES ... 6

Section

1. INTRODUCTION ... 7

1.1 STATEMENT OF THE PROBLEM 7
1.2 RESTATEMENT OF THE PROBLEM IN MATHEMATICAL TERMS 7
1.3 APPROACH .. 9

2. DESCRIPTION OF THE ALGORITHM 13

2.1 INTRODUCTION .. 13
2.2 STATEMENT OF THE PROBLEM AND APPROACH 16
2.3 IMPLEMENTATION OF TS 19
2.4 COMPUTATION OF THE wij's 23

2.5 IMPLEMENTATION OF M I(TS) 28

2.6 IMPLEMENTATION OF T*(M _TS) 29
2.6.1 Unit Vector Method 29
2.6.2 Reverse Flow Method 33
2.6.3 Forming the Filter Function in Transform Space 41

2.7 THE SPECIAL CASE OF A SIDE-LOBE CANCELLER 44

3. SYSTEM IMPLEMENTATION CONSIDERATIONS 45

3.1 CALCULATION OF INNER PRODUCTS 45
3.2 FAULT TOLERANCE AND NOISE SENSITIVITY 63
3.3 GROWTH OF INTERMEDIATE RESULTS 81
3.4 GRAM-SCHMIDT PROCESSING WITH 0(n) PROCESSORS 87

3.4.1 Advantages and Disadvantaqes 90
3.4.2 Tradeoffs Between the Three 0(n) Designs 90

3.5 PROCESSOR INTERNAL PIPELINE/PARALLELISM 93
3.5.1 Compute Inner Product 93
3.5.2 Calculate Weights 99
3.5.3 Apply Weight to Input Data 102

3.6 DESIGN ALTERNATIVES AND TRADEOFFS 104
3.7 UNIVERSAL ALGORITHM HARDWARE IMPLEMENTATION 109

4. CONCLUSIONS .. 121

5. RECOMMENDATIONS .. 127

REFERENCES .. 129

1

CONTENTS (Cont'd)

Appendix

A Performance of the Sample Covariance Matrix Algorithm for
Adaptive Arrays .. 131

B Derivation of Noise Sensitivity Results 140
C Example of Using Gram-Schmidt to Solve A System of

Simultaneous Equations 146
D Reciprocal and Square-Root Calculation 155
E Timing Equations for Block Average and O(n) Processors 157
F Processing Timing for Block Average O(n2) System 167
G Proof of Results on Growth of Intermediate Results 172
H Sample Voltage Vector Model 182

I

-'

LIST OF FIGURES

Figure

1. Basic Gram-Schmidt array for n = 4 11

2. Processor array for computing TS 20

3. Timing diagram for computing TS 21

4a. Calculating w with the matrix M as input (without square
roots) 24

4b. Calculating w!. with the matrix M as input (with square roots)... 24

5a. Calculating w with sample vectors as input (without square
roots) 25

5b. Calculating w!. with sample vectors as input (with square
roots) 26

6. Unit vector method array .. 30

7. Timing diagram for the unit vector method 32

8. Reverse flow method ... 34

9. Timing diagram for the reverse flow method 40

10. Computations for forming the filter function in transform
space ... 42

11. Real data; 5 weights .. 51

12. Real data; 5 weights .. 52

13. Real data; 5 weights, I tap per channel 53

14. Simulated data .. 54

15. Simulated data .. 55

16. Simulated data .. 56
17. Simulated data .. 57

18. Simulated data .. 58

18. Simulated data .. 60

20. Simulated data .. 60

21. Simulated data .. 62

3

iAr

LIST OF FIGURES (Cont'd)

Figure

22. Effect of added noise on optimal SNR 68

23. Simulated data ... 71

24. Simulated data ... 72

25. Simtulated data ... 73

26. Simulated data ... 74

27. Simulated data ... 75

28. Simulated data ... 76

29. Simulated data ... 77

30. Simulated data..78

31. Simulated data ... 79

32. Number of bits required to represent inner products 83

33. Collapsing an array into O(n) processors 88

34. Configuration using O(n) 89

35. Transposing internal weights 92

36. Inner-product computation time 100

37. Bus structure for pipelined (O(n2)) configuration 110

38. Bus structure for recursive (O(n)) configuration 111

39. Variation combining O(n2) and O(n) configurations 112

40. Gram-Schmidt (G-S) equations 114

41. Processor for the O(n2) configuration 115

42. Processor for the O(n) configuration 116

43. Block diagram for node processing element (NPE) 117

" 44. Block diagram for diagonal processing element (DPE) 119

45. Timing curves for different Gram-Schmidt implementations 122

4

A~~ M-MZSM:-::7

LIST OF FIGURES (Cont'd)

Figure

46. Timing curves for various processors, showing banded region
for Gram-Schmidt ... 123

E-l. Model used for O(n) timing measurements 158

E-2. O(n) processor configuration with same speed to calculate internal
weights as O(n2) processors using block averaging 160

E-3. Recirculating pipelines .. 162

E-4. Diagonal collapsing .. 166

5

LIST OF TABLES

Table

1. Comparison of Inner-Product Numerator Implementation
Techniques .. 94

2. Comparison of Inner-Product Denominator Implementation
Techniques .. 101

3. Design Alternatives ... 105

4. Radar Engineering Considerations Affecting Choice of System
Configuration 106

5. Specific Radar Design Parameters 108

6. Conclusions ... 124

E-1. Timings for Three O(n) Implementations 163

6

1. INTRODUCTION

1.1 STATEMENT OF THE PROBLEM

The objective of this study, conducted under Contract No. F30602-78-C-

0271, is to determine a modular architecture for a multiprocessor system to

compute adaptive weights to maximize the signal-to-noise ratio (SNR) of a

multichannel input radar system with a large number of weights. The radar

system to be considered has channel inputs in. all three signal domains--

spatial, temporal, and polarization--with multiple inputs in each domain.

The adaptive system must sense the environment and adjust at least 200 complex

weights imposed on the array elements, on the delay taps off each element,

and on the polarization sensors, thus maximizing the signal-to-noise ratio.

This sensino must be accomplished on a time-varying basis, as the environment

dictates, with minimum convergence time, minimum noise, and maximum stability.

For a multiprocessor to be able to calculate at least 200 complex

weights quickly enough to adapt to the changing environment, not only must a

fast adaptive algorithm and a fast processor system be chosen, but the

algorithm chosen must itself be well suited to the processor system. The

algorithms to be explored are based on the Gram-Schmidt orthogonaliza ion

process. A modular architecture to support these alporithms is designed.

1.2 RESTATEMENT OF THE PROBLEM IN MATHEMATICAL TERMS

Each antenna element in an adaptive array produces an input signal,

which may be written

S (t) N N (t) + S (t), j=l,....n

i7

where X is the complex waveform as a function of time t, N is the noise

component, S is the signal component, the subscript j designates the parti-

cular antenna element, and n is the total number of antenna elements. X, N,

and S may be thought of as complex column vectors of their components:

Xl(t)
X2(t)

X(t) = (2)

n~t

Instead of these continuous waveforms, we will usually deal with the sample

vectors XM(i) N(i) , and S(i), defined by:

X) = X(ti) ,(3)

where the t. are closely spaced points in time. Let W be a column vector of

complex numbers. We form the filter function

F = W*X (4)

as the dot product of W and the input vector X (where W* = W conjugate

transpose).

Our problem is to choose the weights W to optimize the SNR of the

system, and thereby maximize the probability of detection of the signal in

the presence of jammers and clutter. These weights are a function of

the sequence of sample input vectors X(i). This report explores not only

different algorithms for calculatinq the weights W through orthogonalizinq

the inputs X i and filter function F, but also the effects of different

8

modular parallel computer architectures on the implementations of these

algorithms. These effects include execution speed, accuracy, convergence

rates, and fault tolerance.

1.3 APPROACH

Let N be the column vector of noise inputs as, as in Section 1.2.

Assuming the n components Ni have a multivariate Gaussian distribution, we

can write their covariance matrix as

M = E(NN*) (5)

It has been shown [Brennan and Reed 1973] that the optimal weights W are

given by

W = k' 1s , (6)

where S is the expected signal vector (called steering vector) and k is any

nonzero constant (normally 1).

M is not known, but must be estimated from sample data

S j
j=l

L. E. Brennan and I. S. Reed, "Theory of Adaptive Radar," IEEE Trans.
on Aerospace and Electronic Systems, Vol. AES-9, No. 2, 1973, pp. 237-252.

9
1&

where X(J) are sample voltage vectors and S is the number of samples. M is

an n x n dense positive definite Hermitian matrix [Liles and Demmel 1978],

and so forming A as in Eq. (7) and then computing W from Eq. (6) with M in

place of M takes a great deal of computation.

Now let T be a given linear transformation. Then the covariance

matrix MT of the random vector TN is given by

MT + E[TN(TN)*] = TE(NN*)T* TMT* (8)

Thus, we have

W = M'1 = T*MITS (9)

If T can be chosen so that TS is easily computable, and MT is diagonal,

we will have simplified our problem. Such a T is given by the Gram-Schmidt

orthogonalization process and produces a lower triangular matrix T such that

the entries of the random vector TX are orthogonal.

The basic implementation of the processor for computing T and TX is

shown in Figure 1. Each processor is very simple, and all are identical.

The array operates with each row working in parallel on an intermediate step

of TX, and with different rows working as stages in a pipeline to compute TX

for different X's. The array overlaps its updates of its own internal

coefficients wij with computing TX for different values of X.

W. C. Liles and J. Demmel, "Solving Large Positive Definite
Hermitian Linear Systems Utilizing Parallel/Pipeline Processors," Proceedings
of the 1978 International Conference on Parallel Processing, IEEE, 1978,
pp. 261-262.

10 7_ .

pI

B C =B(broadcast) C

Figure 1 . Basic Gram-Schmidt array for n 4.
Arrows indicate direction of data flow.

Our approach is to analyze this basic scheme and its variations with

respect to the following factors:

1. Variations on the basic mathematical algorithm, Section 2.
We consider their different hardware implementations (e.g.,
cost and reliability properties) and stability (e.g., the
number of bits required for intermediate steps).

2. Different ways of computing the internal coefficients, wi.Section 3.1. The different algorithms are analyzed with13 '
respect to their hardware implementations, number of samples
required for convergence, and sensitivity to the number of
jammers. Simulations were performed.

3. Error sensitivity and fault tolerance, Section 3.2. Both
theoretical and simulation results are presented on theeffects of catastrophic and gradual failures of processors

and receiver/antenna systems.

4. Different ways to perform arithmetic, Section 3.3. We
consider both fixed- and floating-point implementations, and
try to derive probabilistic bounds on the growth of inter-
mediate results during the computations.

5. Implementation with fewer processors, Section 3.4. We
consider speed, cost, and reliab~lity tradeoffs when using
only n processors instead of O(n) implementations of
Figure 1.

6. Individual processor constructions, Section 3.5. The
different ways of implementing each processor P.. are
considered with respect to speed and hardware ciplexity.

7. Radar engineering considerations, Section 3.6. We indicate
how different system parameters might affect an engineer's
decision of what version of the Gram-Schmidt algorithm to
implement.

Finally, we select a typical set of radar system parameters and give a

detailed hardware design for a Gram-Schmidt processor incorporating those

parameters (see Section 3.7).

12

2. DESCRIPTION OF THE ALGORITHM

2.1 INTRODUCTION

An n-element radar system has inputs Xi, 1 < i < n, where each component

Xi is the sum of noise Ni and signal Si, expressed in column vector notation as

X = N + S (10)

The output of the system is the filter function, F, given by

F = W*X , (11)

where W is a column vector of complex weights and * denotes conjugate transpose.

Brennan and Reed [1973] have established that in order to maximize the

signal-to-noise ratio (SNR) of the system, W should satisfy

MW = S , (12)

where M is the covariance matrix of the noise

Mi. = E(iNj) (13)

In a real system, Mis not known and must be estimated from incoming samples X.

This section describes an alnorithm based on Gram-Schmidt (G-S) orthogonalization

to form M, solve the system of simultaneous linear enuations determining W,

(Eq. (12)), and compute F.

The literature contains both practical and highly theoretical results

on solving systems of equations. Csanky's algorithm [1976)* requires the

L. Csanky, "Fast Parallel Matrix Inversion Algorithms," SIAM J. on
Computing, Vol. 5, 1976, pp. 618-623.

13

.A.
- - --

least number of operations of any algorithm Eo(log 2n)j but is impractical

because it requires too many processors connected in a complicated way, and

is also numerically unstable. Gentlem7 n [1978]* has given bounds on the time

spent routing data between processori during Gaussian Elimination. Several

investigators have benchmarked various algorithms en different machines

[Calahan et al. 1976; Liles and Demmel 1978; Blakely 1977; Berra and Singhania

1976; Sameh and Kuck 1975]. Sameh and Kuck [1975, 1977a, 1977b, 1978]

have published survey articles. Kung and Leiserson [1978]* have produced

algorithms emphasizing simple processors and simple interconnect structures.

The matrix M in our problem has two very nice properties which make

solving Eq.(12) easier than in the case of a general matrix: It is Hermitian (i.e.,

W. M. Gentleman, "Some Complexity Results for Matrix Computations on
Parallel Processors," Journal of the Association for Computing Machinery,
Vol. 25, No. 1, January 1978, pp. 112-115.

**D. A. Calahan-, W. N. Joy, and D. A. Orbits, Preliminary Report on
Results of Matrix Benchmarks on Vector Processors, Systems Engineering
Laboratory, SEL Report No. 94, University of Michigan, Ann Arbor, May 24, 1976;
C. Blakely, "PEPE Application to BMD Systems," Proceedings of the 1977
International Conference on Parallel Processing, August 26-27, 1977, pp. 193-
198; P. B. Berra and A. K. Singhania, Timing Figures for Inverting Large
Matrices Containing Complex Numbers Using the Staran Associative Processor,
Rome Air Development Center, RADC-TR-76-339, Griffiss Air Force Base, New York,
November 1976; A. H. Sameh and D. J. Kuck, Linear System Solvers for Parallel
Computers, Department of Computer Sciences, Report No. UIUCDCS-R-75-701,
University of Illinois at Urbana-Champaign, February 1975.

A. H. Sameh, "Numerical Parallel Algorithms--A Survey," High Speed
Computer and Algorithm Organization, Academic Press, 1977a, pp. 207-228;
A. H. Sameh and D. J. Kuck, "Parallel Direct Linear System Solvers - A Survey,"
Parallel Computers - Parallel Mathematics, North Holland, 1977b, pp. 25-30;
A. H. Sameh and D. J. Kuck, "On Stable Parallel Linear System Solvers," Journal
of the Association for Computing Machinery, Vol. 25, No. 1, January 1978,
pp. 81-91.

tH. T. Kung and C. E. Leiserson, Algorithms for VLSI Processor Arrays,
Department of Computer Sciences, Carnegie-Mellon University, 1978.

14

M M*) and positive definite (i.e., all its eigenvalues are positive, or,

equivalently, Z*MZ > 0 for all nonzero vectors Z) [Liles and Demmel 1978].

Positive definite Hermitian matrices arise frequently in numerical

work, often implicitly as the sample covariance matrix of a set of sample

vectors. This is the situation not only in the adaptive signal processing

problem which motivated this study, but in many regression and least squares

problems. For example, solving the system AX = B in a least squares sense is

equivalent to solving the normal equations (A*A)X = A*B, where A*A is positive

definite and Hermitian (if A has full rank and where A* = A conjugate trans-

pose). Positive definite Hermitian matrices also arise explicitly in varia-

tional problems, such as solving self-adjoint differential equations with

finite element methods.

The remainder of this section is organized as follows: Section 2.2

gives a statement of the problem and the approach to the problem; Section 2.3

presents an implementation of TS; Section 2.4 computes the wij's; Section 2.5

gives an implementation of MTI(TS); Section 2.6 presents an implementation

of T*(MT1 TS); and Section 2.7 describes possible simplification of the

implementation in the case of a side-lobe canceller (SLC). Appendix C

presents a numerical example of how to use the G-S array to solve a system

of simultaneous linear equations.

15

2.2 STATEMENT OF THE PROBLEM AND APPROACH

Let the system to be solved be MW = S, where M is a positive definite

Hermitian n x n matrix, S is an n x 1 vector, and W is an n x 1 vector of

unknowns. If T is a nonsingular n x n matrix (to be specified later), define

MT = TMT*, where T* = (T)T . Then MT is also positive definite Hermitian (by

Sylvester's law of inertia) and W = M 1S = T*MTITS. By choosing T so that

T, M T and T* are easily computable, we will have simplified our problem.

A good choice of T is given by the Gram-Schmidt orthogonalization process set

forth in Eq. (14) [Rice 1966]*, where <a, b>M denotes the complex inner pro-

duct induced by the matrix M: <a, b>M denotes the complex inner product

induced by the matrix M: <a, b>M = b*Ma,

Z : Sj (input)

< Z., Z1'
i+l i ji iZ = z Z ! - Z I'< i zi M zi 1< i < n - ,i < i_ n (14)

1 iM

Z j Z (output: Z = TS)
j

The coefficients wi <Z1, i> are obtained by performingTh ceficens ij = < I , i M/Z ' Z

Gram-Schmidt orthogonalization on the standard basis ej, 1 < j < n, where

e= { if i = j and 0 otherwise} with the inner product <. , >M Hence,

the vectors ej are orthogonal with respect to the inner product induced by MT,

whi ch implies MT is a diagonal matrix, since <eI = MT = 0 unless i j.

Also, MTi i
= <e i, e T= Zi>M,

J. R. Rice, "Experiments on Gram-Schmidt Orthogonalization," Math.
Comput., 20 April 1966, pp. 325-328.

16

The T induced by Eq.(14) is unit lower triangular (lower triangular

with ones on the diagonal), since Z = Sj plus a linear combination of Sl

through Sj I. Hence T-1 is also unit lower triangular, and both T* and (T*)-l

are unit upper triangular. Since M = TlMT(T-)*, we have written M as the

product of a unit lower triangular matrix L = T-1, a diagonal matrix D = MTs

and L* = (Tl1)*: M = LDL*. This is the same decomposition provided by the

Cholesky algorithm (without square roots [Liles and Demmel 1978]), and because

the Cholesky decomposition is unique, (T l) and MT are the matrices that

would be produced by the Cholesky algorithm. In fact, we show in Sub-

section 2.6.2 that the coefficients w,, are the entries of the matrix L.

Viewing M as the covariance matrix of a column vector V of random

variables with a multivariate normal distribution with zero means (which is

computed as the average of the covariances of s sample vectors Vk, 1 < k < s:

Mij = I/s A Vivj = E(ViV.)),M T is then the covariance matrix of the random
13 k=l ~ ~ ~ M

vector Z = TV:

MT = E(ZZ*)

= E[TV(TV)*]

= E(TVV*T*)

= TE(VV*)T* since T is constant

= TMT*

Thus MT diagonal means Zi and Z. are uncorrelated (orthogonal). This statis-

tical interpretation helps us recognize that this method may be used to solve

*least squares and regression problems.

The variation on Eq. (14) given in Eq. (15) uses a nonunit lower triangular

matrix T and corresponds to the Cholesky decomposition M = LL*. This variation

17

,

has a different implementation and different round off and stability properties,

which will be discussed later.

Z' Si (input)

. I i. I.I <I < n, i < J <n .(15)

Z~j+1 ,i _.i SZN ,Z!
1 1

Z Z3 (output: Z = TS)

Because of the normalization in the second line of Eq. (15), MTi i <ZiZi>M = 1.

Hence, MT = I = identity matrix. Writing L - T-l as before, we now have M = LL*,

the Cholesky decomposition (with square roots). As before, the coefficients

w'!j = {<Z 'i'Zi> if i j; 1/(<Z'i,Z>) if i=j} are the entries of the Cholesky
1Ij j 1 I

factor L. The coefficients from Eq. (15) are related to the coefficients from

Eq. (14) by wij = wij , w~i for i/j. If V is a column vector of random variables

as before, then the entries of Z = TV are independent Gaussian random variables

with unit variances.

In summary, the algorithm to solve MW = S is:

1. Compute the wij's, either directly from the entries of the M

matrix, or from sample vectors.

2. Compute MT

3. Compute TS.

4. Compute MT l(TS).

5. Compute T*(MT TS).

18

2.3 IMPLEMENTATION OF TS

Our implementation of TS is shown in Figure 2, for n = 4. Arrows

indicate directions of data flow. As in Eq. (14) (Section 2.2),

<Zii i i
w ij = Z,Zi> M/<Z i,Zi>M

and processor Pij performs the computation

i+1 iZi = Z - W i

The n(n - 1)/2 processors operate as follows: The processors in row i operate

simultaneously on values passed to them by the row above. Zji1 is passed

vertically from Pij to Pi+l, ' and the rightmost processor Pi,i+l ("diagonal"

processor) broadcasts i+l to all the processors in the next row simulta-

eously. All processors operate simultaneously and in lockstep, each row

performing its operations on the intermediate results of a different input

vector in one unit time step. Different S vectors may be piped into the top

of the array, and a new vector entered each unit time step.

A timing diagram is shP"'n in Figure 3 for the case n=4. Superscripts

indicate different vectors; subscripts, different components. The horizontal

axis is labelled in unit time steps. The top four rows indicate when data should

be submitted to the input ports at the top of the array, and the bottom four

rows indicate when the components of the output vectors Zi = TSj are available

at the output ports at the right of the array. One can see that the m pro-

ducts Zj = TSj, 1 < j < m, can be formed in n+m time steps.

This implementation has the following advantages: It has a simple

interconnect structure, with unidirectional and fixed-destination data flow;

and the processors are very simple, identical, and independent of n.

19

INPUT PORTS

S S52 $3 S4

PPZ OUTPUT
{ ~2 2 PORTS

4Z

3z

Iz.

i ISA

(HORIZONTAL MOVEMENT OF Z! IS A

z i+l BROADCAST THROUGH THE
WHOLE ROW)

,t Figure 2. Processor array for computing TS.

20

I

Time

1 2 3 4 5 6 7 8 9 10

Inputs

Port No. 1 SS S2 S S4 S5 -
1 1 1 1 1

Port No. 2 S1 S2 S3 S4 S5 -
2 2 2 2 2

Port No. 3 S1 s 3 s -
3 3 -'3 3 3

Port No. 4 s1 S2 S3 S4 S5 -

4 4 4 4 4

Outputs

Port No. 1 z1 z2 z3 z4 z 5

Port No. 2 1 z. z3 24z -

Port No. 3 ZI Z2 z3 z 4 z5

3 3 3 3 3

Port No. 4 1 z2 z3 z4 z5 5
4 4 4 4 4

Figure 3. Timing diagram for computing TS.

21

-- ,=-= , '-, ,==.: C _-C ._ .. .lir '. Z "IL -- - _ ,,, , A

Also, the processor array works without modification on vectors of size less

than n.

In the case of Eq. (15) (with square roots) of Section 2.2, the only

difference in implementation is that there must be a processor to divide Z'
I

by its norm (<Z'1 i M before broadcasting it.

22

2.4 COMPUTATION OF THE wil's

The wi. s are computed in two ways, depending on whether the matrix M

is known or must be estimated from vectors sampled from the underlying

distribution. It turns out that the two methods require similar hardware.

We first discuss the algorithm without square roots (Eq. (14)).

If the matrix M is available, the wij's are computed by pipelining the

columns of M into the top of the processor array, and performing the compu-

tations indicated in Figure 4. Zj(k) denotes the intermediate result

from the kth column of the matrix M. The IF-THEN-ELSE in Figure 4 may be

implemented by having a control line for each row of the array: During normal

operation (computing TS, or the ELSE clause in Figure 4) the control signal

is off, and when the data from column i has finally reached row i in the array,

the control signal should be turned on to tell the processors to compute wij.

A timing diagram for the complete implementation appears later, in Figures

7 and 9 (Section 2.6).

The configuration just described requires a divide unit in each

processor. Because each processor in row i computes the same reciprocal

l./Zi(i), the diagonal processor, P i-,i, can also compute this value

and broadcast it along with Zi(i) itself. This approach simplifies all but1

n - 1 of the processors, but requires more data to be broadcast.

Either configuration can compute all the wij's in n+l unit time

steps.

If sample vectors are known instead of the actual matrix, the method

is similar. If s sample vectors are given, all s must be passed through

the array n-l times, performing the computations shown in Figure 5a.

Each time the s samples are passed through, another row of wij's is calculated.

23

Z(zi((k

if k = i then

Zi(k)

13 zi (k)

else
i+l ii
z i (k) = (k) - wij Zi(k)

zi+l (k)
z

Figure 4a. Calculating w i with the matrix M

as input (without square roots).

Pi ij 0 j)

if k =i then
W! - l)Z i

W!j - Z'(k) - w'

else

z +l(k) Zi (k) - wij i Zi(k)]

Figure 4b. Calculating w, with the matrix M

as input (with square roots).

24

Z(k) Z (k)

-i. -.i,if k :i then

if not last sample then

w 1W + Z1(k) • kij i i 3

ij~ ~ T = i (k) " i(k)

else

waij ptwit j

else
Zj (k) = Z (k) -wijZ i(k)

9.3

2 (k)

Figure 5a. Calculating wij with sample vectors

as input (without square roots).

25I

Pij

if k 1 then

if not last sample then

S + (k) Z (k)WI =WI + i z

i W -+1(k) ZI(k)wij'=wi

else

W,wii I ii = j i

else

z +1(k) = zM(k) - w . • z*(k)]

*i (k)

Figure 5b. Calculating wj. with sample vectorsii
as input (with square roots).

* 26

In the expression Zj(k) the k denotes which row of wij 's is being calculated.

A total of [(s + l)(n - 1) + 1] time steps are required to compute all the

Wij'S.

As in the case where the matrix M was input, an alternate configuration

is to have only the diagonal processor compute w.. = w +J(k)" Z'(k) and

l/wij and broadcast 1/wij

The implementation of the algorithm with square roots (Eq. (15)) is

similar and is shown in Figures 4b and 5b.

Since each processor P in row i needs the same quantity w!i (or its

reciprocal), it is possible to have a diagonal processor Pii to calculate this

value only and broadcast it (along with Z (k), in the case of Figure 5b).

This possibility increases communication needs slightly but makes each Pij

much simpler.

Other methods exist for computing the wij's when sample vectors are

used; they are variations on the general scheme shown above and are

discussed in Section 3.1.

27

iI

2.5 IMPLEMENTATION OF MT (TS)

Because MT is diagonal, MTI = diag(<Z',Z'>"1), and these values are
i i s i n P fo J , it i a y t

available in any processor (l./<Zi,Zi>M is in for all J), it is easy to

compute MTI(TS): Just attach a multiply unit to each output port on the right

of the array and multiply the output at port i by the value of <Zi> -1
i

I
borrowed from the processor just to the left, Pn" When the algorithm with

square roots is used, MT is the identity matrix and so nothing needs to be

done.

28

2.6 IMPLEMENTATION OF T*(MTITS)

This step of the algorithm, the formation of T*(MITS), has three differ-

ent implementations. The first, the unit vector method, uses the array shown

in Figure 2 (Section 2.3) with n additional processors on the right. It can

solve the m problems MW = Si, 1 < i < m, in time O(mn) with high efficiency

E = processor on-time/(total time total processors)

= (m/m+l) [(n+l) 2 - 2)/(n+l)
2

The second method, the reverse flow method, requires some chanqes to the

array but preserves the simple interconnect scheme. It can solve the m

problems in time O(m+n) but with somewhat lower efficiency

E = m/[m + 2(n+l)]

The third method, the transform space method, is essentially different from the

other two in its use of the array to compute the filter function, F, directly.

The first two methods compute the weights, W, which must then be used (by another

piece of hardware) to compute F.

Overall timings of the different implementations are given. A more

detailed comparison of the unit vector and reverse flow methods is given in

Appendix F.

2.6.1 Unit Vector Method

The unit vector method forms T*(MT TS) with a vertically connected

array of n simple processors connected to the output ports of the array as

*in Figure 6. First, the vector S is passed through the array, and the n

numbers Yj = (M S)j are formed and stored in registers inside the

processing elements (PE's). Then,the n unit vector Ej (E= 1 if i = j and 0

otherwise) are piped through the array to form the n products TEj . Given that

29

C'

PE I

PE 2

PROCESSOR
ARRAY

PE 3

PE 4

Dj-1

Dj = Dj_ + (TE'). "Y

PE =[Y. (MTI S)j
n

-
Do 0 0, 0 n = (TE). Yj OUTPUT

Djz

Figure 6. Unit vector method array.

i
30

n n
(T*Y) j L TkjYk = (T')kYk

k=l k=l

and that erms TEk and Yk are both available at the kth output port,

these terms may be multiplied, added to a partial sum computed by PEk- l

during the preceding time step, and passed to PEk+ l for the next time step,

as shown in Figure 6.

A timing diagram for the entire process of solving MWi = Si for

n = 3 and 1< i < 2 is shown in Figure 7. Y denotes (MTITSi) , and D,

denotes the output of PE. with input (TE).

A timing analysis may be made easily from the timing diagram. A

total of n time steps are required to compute the wij 's. Not counting these

time steps, a total of TUV = (m+l)(n+l) units of time are required to pass m

vectors Si and mn unit vectors Ej through the array. We may compute the

efficiency of the array where Tp is the time processor p is on, P is the number

of processors, and T is total time required to finish processing, as follows:

EUV = E T p/(T*P)
all processors

Each of the n(n-l)/2 processors in the array has Tp = m(n+l),and each of

the n outboard PE'S has T = mn; therefore,

(n {~~l)_ - 21
m (n+l)2

Thus, EUV approaches 1 as m and n grow. The unit vector method is thus

an efficient implementation, and it is the same for both the with-suare-r,'-

and without-square-roots versions of the alqorithm.

31

Time: 1 2 3 4 5 6 7 8 9 91 11 12 13 14 15

Array Input #1 M1 l Ml2 M13 s I E1 E2 E S2 El1 E2 E3

#2 M M M sl E1 E2 E3 S2 EI E 2 E 3

21 22 23 2 E2 E2 2 2 2 2 2

#3 M M sl 1 E2 E 3 S2 E 1 E 2 E 3

M31 M32 33 3 3 E3 3 3 3 3 3

Array Output #1 Yll TE1 TE 2 TE3 Y2 TEl 2TE3
1 1 1 1 1 T 1 T 1 1

#2 Y1 TE TE TE TE TE1

Y2 2~ 2E 2 2 2

#3 Y1 TE1 TE2 TE Y 2 TEI TE2 TE 3

3 33 3 3 3 3 3

PE Output #1 D *2 D DI D2 D3
1 1 1 11 1

#2 D 1 D2 D 3 Di Do2 D 3
2 22 2 22

#3 D 1 D 2 D3 D 1 D 2 D
%333 33 3

Figure 7. Timing diagram for the unit vector method.

32

2.6.2 Reverse Flow Method

The reverse flow method depends on the interesting fact that the array

can compute T*Y by inputting the components of the vector Y at the right

side of the array, performing all the computations in the reverse order

(using w instead of w), and extracting the outputs at the top of the array.
ij ii

This process is illustrated in Fiqure 8. Now the broadcasts take place

in the vertical direction, whereas when computing TS the broadcasts were

in the horizontal direction.

A proof of this fact for the alaorithm without square roots (illus-

trated here for n = 4) depends on the fact that T can be written

1 0 0 0 1 0 00 1 0 0 0

0 1 0 0 0 1 0 0 -W 12 1 0 0

0 0 1 0 0 -w2 3 1 0 -W1 3 0 1 0

0 0 -w34 1 0 -w2 4 0 1 -wl4 0 0 1

thThe i matrix in this product represents the computations oerformed by

the (n-i) th row of the array. Hence,

T* = [(T*)-]
I :1 [(T-1)*

_* -1

1 00 0 1- 01 0 0 0

w 1 0 0 0 1 0 0 0 1 0 0

w1 3 0 1 0 0 w23 1 0 0 0 1 0
w1 4 0 0 1 0 w2 4 0 1 0 0 w3 4 1

33

B

C = A (BROADCAST)

D

DATA FLOW FOR COMPUTING T

B

A P C A =C -wij D
B = D (BROADCAST)

D

DATA FLOW FOR COMPUTING T*

Figure 8. Reverse flow method.

34

_-

1 0 0 0 -1

w12 1 0 0

w1 3 w2 3 1 0

w14 w24 w34 1

1 w12 w13 w 1

0 1 w23 w24

0 0 1 w34

0 0 0 1

1 0 0 w14 1 0 w13 0- 1 w1 2 0 0

0 1 0 w2 4 0 1 w2 3 0 0 1 0 0

0 0 1 w34 0 0 1 0 0 0 1 0

1 W12 0 0 1 0 -w0 1 0 0 -w

0 1 0 0 0 1 -w2 3 0 0 1 0 -w24

0 0 1 0 0 0 1 0 0 0 1 -w34

0 0 0 1 0 0 0 1 0 0 0 1

The ith matrix in this product for T* represents the computations performed

by the (n-i) th column of the array during reverse flow.

The same type of argument shows that the wij are the entries of the

matrix L in the Cholesky factorization M = LDL*. Recall from Section 2.2

that L -T1

35

1 0 0 0 1 0 0 0 1 0 0 01

0 1 0 0 0 T 0 0 w 12 1 0 0

0 0 1 0 0 -w23 1 0 -Wl3 0 1 0

0 0 -w34 1 0 -w 0 1 W 4 0 0 1

1 0 0 0- 1 0 0 0.1i-1 0 0 6-I

- '-W12 1 0 0 0 1 0 0 0 1 0 0

"W 0 1 0 0 -w23 1 0 0 0 1 0

-Wi4 0 0 1 0 -W24 0 1 0 0 -w34

1 0 0 0 1 0 0 0 1 0 0 0

Wi2 1 0 0 0 1 0 0 0 1 0 0

W13 0 1 0 0 W23 1 0 0 0 1 0

LWl 4 0 0 1L 0 w24 0 1 0 0 w34 1

1 0 0 0

w12 1 0 0

W13 w2 3 1 0

W1 4 w24 w34 1

The proof is similar for the algorithm with square roots:

36

W33 "23W 2

wi 1

-wi2*w' 1

13 11

T* =[(T)*

1wl 1 N

1i 1 /W

*-1

1

1

1/W44

Wi2 'Nw 2

W13 W2 3 1/N 3

LWi4 W24 W4 1/w~44

37

N/jj W2 ;1 3 Wj4 -1/w22 w 3 -'2

1llwi3 ,w34

1/w44-

1 1 l4 1 W13 Wl2 1/wi 1

1 -N 2 -' l/w 2

1 ww 3 I

I/w44 1

1 -w1 2 *w2 2 1 --'W 3
"22 ' Wl2 3 w3 3

1 1 w33

i4 33

1 1 I

14.w44

-324 w44

w44

Note that the quantity being broadcast vertically in column j gets multiplied

by wj before broadcasting, since the processors in column j do not contain
i

the number w' Also,

1/Wi1 1 11

T-1 w 2 I N 2 1 1

wi3 1 w93 1 i/wh3

wi4 1 w24 1 W 4 1 1W 44

38

1/wi]

Wi2 lwk2
w w
1i3 23 l/M3
ww 4 wi4 'N4j

so that the wij's are the entries of the Cholesky factor L in M : LL*,

except that the wii 's are the reciprocals of the diagonal elements of L.

The same lockstep pipelined operation for data movement that was used

for T is used for T*, except backwards. A timing diagram for the entire

operation of solving MW' = Si for n = 3 and I < i < 4 is shown in Figure 9.

A shift register of length n-j is required at output port j in order to

resubmit the components of the vector MTITS to the array simultaneously.

In Figure 9, YJ denotes MTITSJ and W3 = M-S j , the solution.

As before, we analyze the timing excluding the time steps

required to compute the wij 's. If m vectors Si are to be input at the top,

the total time required is m (to input the Si's) plus n (to compute TS
i

plus 1 (to compute MT TSi) plus I (to resubmit Y') plus n (to compute T*Y):

TRF = m + 2(n + l). = O(m + n)

This relation is to be contrasted with the TUV = (m + 1)(n + 1) for the unit

vector method. Analyzing efficiency as before, but interpreting Pi as two

processors, one for T and one for T*, we have n(n - 1) processors being used

for m time units and n processors for m units, for an efficiency

* ERF = m/[m + 2(n + 1)]

This efficiency function has a behavior different from EUV for the unit vector

method: ERF is low for small m and large n, whereas EUV was an increasing

39

1I

Time: 1 2 3 4 5 6 7 8 9 10 11 T2 13 14 15

input at top #1 MN H12 i 3 1 S2 S 3 S 4
of array

#2 1 M2 22 123 4
' M2 23S 2 ~2 2 ~2

#3 M3 M3 M S1 S2 3 4

output at #1 TS1 TS2 TS 3 TS4

right of array

#2 TS1 is2 S3 TS 4

#3 TS1 TS 2 TS 3 TS
4

3 3 3 3**

Y MW1 TS #1Y1 Y2 3 Y4

#21 1 1 1 ~

2 2 2 ...

#3 y1 2 y3 y4

V3 V3 3 V3

input at #1 YI Y2 Y3 Y 4 '

right of array

#2 1 3 4
#2 Y 2 Y 2 Y2 Y2

#3 1 2 Y3 Y4
V3 3 V3 V3

. output at #1 W ...

top of array

#2 Wi W 2 W3 W 4

2 2 2 2 "

3 , 1 ,1 w 3 4

3 3 3 3*~

Figure 9. Timing diagram for the reverse flow method.

40

function of both m and n. This is a typical speed/efficiency design tradeoff

often encountered when designing parallel systems [Chen 1971a; 1971b].*

2.6.3 Forming the Filter Function in Transform Space

The ultimate output of the system under consideration is the filter

function

F = W*X

where X is a column vector of receiver inputs. The algorithm discussed in

the preceding two subsections (2.6.1 and 2.6.2) computes W, assuming another

piece of hardware is available to form the inner product W*X. It is possible

to avoid computing W itself, and to form the filter function as follows:

F W*X

(M-lS)*X

S*M- lx

S*T*(T*)'IM-1T-1TX

(TS)*(TMT*)-ITX

(TS)*MT- (TX)

Recalling that MT is a diagonal matrix, we see that the vector (TS)*MTl may

be computed once and stored, and then its inner product with TX computed.

The hardware required to implement this approach is virtually identical

to that of the unit vector method. After the wij's have been calculated

T. C. Chen, "Unconventional Superspeed Computer Systems," Spring Joint
Computer Conference, 1971a, pp. 365-366; T. C. Chen, "Parallelism, Pipelining,
and Computer Efficiency," Computer Design, Vol. 10, 1971b, pp. 69-74.

41

tA

(including the entries of M-IT, the steering vector S is passed through the

array, and the values [(TS)*M I]i stored in a vertically connected array of

processors to the right of the main array, as in Figure 10. Then, as the X

vectors are pipelined into the top of the array, their results (TX)i will be

available at PEi where [(TS)*MTl]i is stored, and inner products of the vectors

will be formed just as in Figure 10. The timing diagram is similar to that

in Figure 7, with the value of F = W*X being available from PEn n+l time

steps after X is input.

D D + (TX)j

= (TS)*MTX
PE2

PROCESSOR (TX).i- DARRAY PE3 D=0

PE 4 0 n j q(TX).
0. j=l '

= (TS)*M TTXF OUTPUT

Figure 10. Computations for forming the filter function in
transform space.

This approach has two advantages over approaches described in the

preceding two subsections. First, the array produces the desired output

directly instead of just the weights W. The hardware is as simple or simpler

than the unit vector method implementation and much simpler than the reverse

flow method. Second, it is possible to continuously update the wij's without

temporarily halting computation of the weights ; in this way, the wij s are always

computed from the most recent information. This point will be discussed

further in Secti.on 3.

42

---------------------------------- i.-

The disadvantage of the transform space method is that in a real

system, the X's may be sampled at a far faster rate than the array is able

to process them. The X's are accepted one per time step of the array (and

one F = W*X value is computed once per time step), whereas the sampling rate

of the radar may be many times faster. (The unit vector method and reverse

flow method do not have this disadvantage because, given W, F = W*X can

be calculated extremely fast.) Whether this downsampling would adversely

affect the overall system performance depends on the individual system.

43

2.7 THE SPECIAL CASE OF A SIDE-LOBE CANCELLER

It is possible to simplify our proposed implementation in the case of

a side-lobe canceller (SLC), because of the special form of the steering signal

(all zeroes, except for a one on the component corresponding to the main beam).

It turns out that the best way to exploit this special form is to have the one

in the steering signal occur in the last (nth) component. With this S, TS = S

(since T is unit lower triangular); thus, no work is required to pass S through

the array.

The effect on the unit vector method is to reduce the sum defining the

output,

n n

to

W (TEJ)nM
nn

where MT = diag (MTjj). Thus, only one outboard processor is needed at output

port n to compute 'J, The overall timing is the same.

The reverse flow method also simplifies because the vector to be passed

backwards through the array is known a priori, (0,...,OMT1)T, eliminating
ne

the need for shift registers and reducing the overall length of the pipe by

n steps.

The transform space method becomes exceedingly simple, with only one

outboard processor required at output port n, and since

F = (TS)*MTl(TX) = (MT nTX)R

its output is simply the filter function.

44

3. SYSTEM IMPLEMENTATION CONSIDERATIONS

This section describes the characteristics of different versions of the

basic implementation discussed in Section 2, and various radar engineering

considerations and how they affect the choice of implementation. We consider

different ways of computing the internal coefficients (Section 3.1); error

sensitivity and fault tolerance (Section 3.2); different ways to perform arith-

metic and growth bounds for intermediate results (Section 3.3); implementation

with O(n) processors instead of O(n 2) (Section 3.4); and construction of

individual processors (Section 3.5). In Section 3.6 we summarize the variety

of system implementation choices discussed in Sections 3.1 through 3.5, and

show how different radar engineering system parameters affect implementation

choice. Finally, in Section 3.7, we select a typical set of system parameters

and give a detailed design for a Gram-Schmidt processor incorporating those

parameters.

3.1 CALCULATION OF INNFR PRODUCTS

The algorithm of Section 2.1 requires the calculation of many inner

products <Z.Z.> . The method given, which computes the sample average

YZ1 (k)Zi(k) (see Figure 5), is one of several nossible methods. All
k i
the methods involve averaging over samples, as in Figure 5, but can weight

different samples differently:

m
Em = wk WkEk (16)

° k=l

Here Ek is one sample value (say, Z'.Z (Zk)) , w is its weight,and E
m is the

estimated average using m samples. For E to be an unbiased estimator ofth tueavraeitisneesar tatwkz'0 ndZw= . ubec tEti

the true average, it is necessary that wk > 0 and.W k = 1. Subject to this

45

mild restriction, we are free to choose the w k s so that our estimate F has

desirable statistical properties, such as beinq able to closelv follow the

true average as it changes in time without being confused by noise spikes.

It is well known that if the underlying distribution from which the

E k s are sampled is stationary in time, then the best unbiased estimator of

their mean is an equal weighting of all available sawples:

Em 1 k (17)m k=

When the underlying distribution is changing, as it will in any real system,

then Eq. (17) introduces a bias, because it weights old samples as much as new

ones. A good choice of wk s must satisfy two conditions: It must average

over enough samples to compute a statistically significant result (at least

n samples (n=number of weights) are required just for the matrix M to

be nonsingular), and it must weight the recent values heavily enough to

follow the average quickly, but not so heavily that noise spikes confuse it.

The optimal choice of an averaging method probably would vary from

system to system, but there are certain schemes which work well in many

situations and are worth analyzing. The methods have different implementa-

tions, depending on the rest of the system (e.g., implementations of Sections

2.6.2 and 2.6.1 versus that of Section 2.6.3). After the discussion of each

method, therefore, we analyze various implementations. Finally, we present

test results using actual radar data. These results allow us to compare

how well the methods maximize the signal-to-noise ratio (S R) of the system.

46

Block Averaging

First, we have block averaging, the method described in Section 2. In

this method, the wij's are periodically reinitialized to zero, data are passed

through the array, and the wij's are formed, giving equal weight to each

product in the sum (as in Eq. (17)). This form of averaging may be accom-

plished using the same set of K samples to com, te the wi 's in each row, or

different sets. If the same set of samples is used, buffering is required

to save the data. Buffering occurs just before the inputs of the array,

in order to pass the data through the array n-I times. If buffering is not

used, a total of K(n-l) samples is required, and the method is called cascaded

block averaging. The first time through is to compute the first-row averages

(j and wlj) in the "if k=i' clause in Figure 5. The second pass performs

the outer "else" clause of Figure 5. Z 2(2) = Z1 (2) - wljZ 1 (2) in row 1 and the

"if k=i" clause in row 2. In general, the copy of the data input to the array

between time steps (m-i)K+l and mK finally arrives at row m and is used to

compute w mj between time steps (2n-2)K+l and(2m-l)K. Steering vectors S (in

MW=S) can be input starting at time mK+l, and all the values of TS are avail-

able at time (2n-3)K+l.

If no buffer is to be used, then a different set of K samples is input

in each time period (m-l)K+l to mK. This method, called cascaded block

averaging, will compute values of wij close to their true values if the

underlying distribution determining the input values changes slowly and

enough samples are used. Recall the result of Reed, Mallett, and Brennan

[19741 that says approximately 2n samples are required for an expected SNR

of 3 dB within optimum.

1

I. S. Reed, J. D. Mallett, and L. E. Brennan, "Rapid Convergence Rate
in Adaptive Arrays," IEEE Trans. on Aerospace and Electronic Systems,
Vol. AES-lO, No. 6, November 1974, pp. 853-863.

47

Exponential Averaging

Second, we have exponential averaging. In this case, we take a

weighted sum of the old average and the new data:

Em+l = SEm+ l + (l-S)E
m 0 < S < 1 (18)

If S is close to 1, then the new average Em + l is very responsive to new data
E m+I If S is close to zero, Em+l changes more slowly, being determined mainly

by the old average. Exponential averaging can be implemented either with or

without a buffer, as in block averaging, or, once the system has been started

up and w ij values are available, the wij's can be updated by inputting just

a few sample voltage vectors and averaging them in. This is an advantage

over block averaging: With block averaging, each time the wij s are to be

updated, a lag time of (2n-3)K is needed, where K is at least n and

preferably 2n; K may be significantly smaller with exponential averaging.

Note that it is possible either to exponentially smooth w.. itself, or

to smooth its numerator and denominator separately, before dividing them.

(If, in addition to this separate smoothing, the denominator is approximated

by its closest power of 2, the problem of doing division is reduced to

shifting).

Window Averaging

Finally, we have window averaging. In this case, the last K samples

are always used to compute the wi 's, thus using the most recently available

information at all times. This method requires saving a buffer of the last
K values used. When a new value (e.g., Z'zi) is computed, it is added to

the window average, put on top of the buffer, and the oldest value removed

from the bottom of the buffer and subtracted from the average. The buffer

can conveniently be implemented as a shift register. In addition to always

using the most recent data, window averaging has the same advantage as ex-

48

Lam

ponential over block averaging: It does not always require a lag of (2n-3)K

samples to update the w ij's. The disadvantage, of course, is the need for a

long shift register (at least n and probably 2n words) for each average

(n(n-l)/2 or n(n-l), depending on the implementation).

The transform space method of Section 2 can be used as well as any ot

the above methods, but its real advantage lies in the fact that since samples

(in contrast to steering vectors) are constantly being passed through the

array, the w ij's can be updated simultaneously with the calculation of filter,

functions. Hence, when exponential or window averaging is used, no delay at

all (after startup) is needed to update the weights. Each filter function

is always a function of the most recent information.

Reed, Mallett, and Brennan [1974] have shown that the expected value

of the achieved SNR is 10 loglO[(K+2-n)/(K+l)] dB below the SNR achieved with

optimal weights. This expected loss is about 3 dB when the number of samples,

K,equals 2n. Of course, if a great deal of clutter is present, more samples

may be required to average it out. Also, Brennan [1974] has recently shown

that if the weights determined by K samples are in turn used to form filter

functions from those :ame samples instead of a different set of samples (as

in nontransform space operation), then the expected SNR is actually higher

(see Appendix A).

We now present some qraphs of system performance versus sample size for

both real and simulated data, varying numbers of weights, and varying aver-

aging schemes (Figures 11 through 21). System performance is measured by

how many decibels down the achieved SNR is from the optimal SNR:

L.E. Brennan, "Performance of the Sample Covariance Matrix Algorithm
for Pdaptive Arrays," unpublished manuscript, 19 July 1979.

49

Performance = 10 loglo[(IS*WN2/W*MW)/S*M-IS)]

The real data is taken from an operational 5-weight adaptive system, and the

simulated data model is described in Appendix H. The true matrix M for the

real data is estimated by averaging over all available samples (100). The

different algorithms used are Cholesky, Gram-Schmidt using blocked averaging,

Gram-Schmidt using exponential averaging (for various exponential weights,

i.e., the factor S in Eq. (18)), and Gram-Schm:dt using cascaded block

averaging. In the case of simulated data, the various model pTrameters are

the number of weights, number of jammers, location and power of the jammers,

and the ratio of strongest jammer power to receiver noise power (per receiver).

This last quantity is the spectral condition number of the matrix. The use

of tapped delay lines (one-sample long) is also indicated.

For the real data (Figures 71 and 13) we see that the results for

Cholesky and blocked G-S almost overlap. They are mathematically identical

algorithms, and any small difference is attributable to roundoff error (all

arithmetic is 32-bit floating point with 24-bit mantissas). Cascaded blocked

G-S has essentially the same performance as blocked G-S; but exponential G-S

lags behind, performance improving, but still poor as the weight decreases

(which means the new samples are weighted less than the old).

For the simulated data with 5 weights (Figures 14 through 17),

Cholesky, blocked G-S,ana cascaded blocked G-S all have virtually identical

performance, but exponential becomes poorer as the number of jammers increases

(from 1 to 4).

4 | With 10-channel simulated data using 5 jammers (Figure 18), cascaded

(G-S, blocked G-S,and Cholesky are again virtually identical. In fact,

50

17~

CL I 04 - (N0

4 - -.E I G - M _.. 25 _
I'-- T _ - T - IT

j--~

C;

O - CHOLESKY
- EXPONENTIAL GRM-SCIDT, WEIGHT .25I LT ------ - CAcSCADED BLOCKED 61OKDGRJ SI-4DsCH4IDT r 1~~ -

NtJiNI3L (3K 3F'IK',rlLLK <

Figure 11. Real data; 5 weights.

51

--- - - - --

5 10 15 20

o-CHOLESKYE
+-EXPONENTIAL GRAM4-SCHMIDT, WEIGHT - .5E
*-EX PONENTIAL GRAM4-SCHM4IDT, WEIGHT - .25

cm- EXPONENTIAL GRAM4-SCHM4IDT, WEIGHT - .125
I -T

io1 15 20

NUMBER OF SRMRLLS

Figure 12. Real data; 5 weights.

52

K15 20 25 32 Z

o CHOLESKY
-EXPONENTIAL GRAM4-SCHMIDT, WEIGHT =.25
* CASCADED BLOCKED GRAM~-SCHMIDT

:2 1525 32 3

Figure 13. Real data; 5 weiohts, 1 tap per channel.

53

10 15 20

~ILL,

-4

-CHOLESKY

± -EXPONENTIAL GRAJ4-SCHMIDT, WEIGHT .25
B LOCKED GRAM4-SCHM4IDT

- CASCADED BLOCKED GRA4-SCHIDT IO

15 20

NUNBER OF SRFPLLiS

Figure 14. Simulated data:

1. Number of weights = 5
*2. No tapped delays

3. Number of jammers = 1
4. Location and power of jammer: (-36.9', 0 dIB)
5. Ratio of power of strongest jammrrer to receiver

noise power =50 dB.

54

~r

- -

- CHOLESKY -

- - EXPONENTIAL GRAM-SCHMIDT, WEIGHT .25

- - BLOCKED GRAM-SCHMIDT
- - CASCADED BLOCKED GRM4-SCR4IDT

12 ! 22

UNB ER C~8'E

Figure 15. Simulated data:

1. Number of weights = 5

2. No tapped delays

3. Number of jammers = 2

4. Location and power of jammers:
#1 (-36.9-, 5.0 dB), #2 (-11.50, 0 dB)

5. Ratio of power of strongest jammer to receiver
power = 40 dB.

55
!A

0 5 20

--

-]- CHOLESKY r
S- EXPONENTIAL GRAI4-SCHIIDT, WEIGHT -.25 -

- BLOCKED GRAJ4-SC #IDT
S0 - CASCADED BLOCKED GRAN-SCI4IDT-

10 15 20

NUMBER OF S PES

Figure 16. Simulated data:

1. Number of weights = 5
2. No tapped delays

3. Number of jammers = 3

4. Location and power of jammers:
#1 (-36.9:, 6.67 dB)
#2 -l1.50, 3.33 dB
#3 (+11.50, 0 dB)

5. Ratio of power of strongest jammer to receiver
noise power = 40 dB.

56

- -CHOLESKY

-EXPONENTIAL GRAMl-SCHI#DT, WEIG -T =.25
-7 - BLOCKED GR.AM-SCHM IDT

-- _CASCADED BLOCKED. GRAM-SCHt4IDT -

Figjure 17. Simulated data:

1. Number of weights = 5

2. No tapped delays

3. Number of jammers = 4

4. Location and Dower of jammners:
#1 (-36.9-, 7.5 dB)
#2 (-11.5-, 5.0 dB)
#3 (+11.50, 2.5 dR)

#4 (+36.90, 0 dB)

*5. Ratio of power of stronqest jammer to receiver
noise power 50 dIB.

57

. 15 20 25 32 35 42

CHOLESKY

_ + -EXPONENTIAL GRAM-SCHMIDT, WEIGHT .25
-)K BLOCKED GRAMI-SCHMIDT-

- < -CASCADED BLOCKED GRAM-SCH11MIDT -

2. No appeddelay

#2 (9 .

" ~ # (-52' 4.0 dB) L

z ,-,S R 0- S, : ,

#4 o1.' tappe delay

5. Roation an power ofstogt jammer ecie

. - -5.1, .0dB

:2 ,iS llS ° 22 0 32 3

Fiue 8 Simulated ,data:

5~~~. Loation an power of ames:amrtorcie

noise power = 40 dR.

58

cascaded G-S performs somewhat better, because it uses n-I times as much data

as the other methods. Again, exponential performs the poorest, with a weight

of 0.25 being best in this case (Figure 19).

With 35- and 50-channel simulated data, using 10 and 20 jammers,

respectively, blocked and cascaded G-S and Cholesky are again virtually

identical, with exponential G-S performing roorly (Figures 20 and 21,

respectively).

Seven of the nine cases achieve an SNR within 3 dB of optimal

after 2n samples; the other two cases are within 5 dB.

The location of the jammers (first number in parentheses in item 4

of the simulated-data captions) is given in degrees from boresight, and,

jammer power (second number in parentheses) is expressed as decibels below

the strongest jammer.

We spent a great-deal of effort analyzing cases with low numbers of

weights because the effects of changes in the number of jammers and exponen-

tial weights show up more quickly.

5

59

10 15 20 25 30 35
I I pI I I p

kr

~2z

-C - CHOLESKY

+ - EXPONENTIAL GRAM-SCHMIDT, WEIGHT * .5
- EXPONENTIAL GRAM SCHMIDT, WEIGHT - .25

I 0 - EXPONENTIAL GRAM-SCHMIDT, WEIG -

10 I5 20 25 30 35 40

NUMBER OF SRMPLES

Figure 19. Simulated data:

1. Number.of weights = 10

2. No tapped delays

3. Number of jammers = 5

4. Location and power of jammers:
#1 (-53.10, 8.0 dB)
#2 (-36.9° , 6.0 dB)
#3 (-23.6', 4.0 dB)
#4 (-ll.5 ° , 2.0 dB)
#5 (0.00, 0 dB)

5. Ratio of power of strongest jammer to receiver
noise power = 40 dB.

60

........ -- ---- -- ------ ---... ..

.. CHOLESKY

- EXPONENTIAL GRAM-SCHMIDT, WEIGHT =.2
- BLOCKED GRAII-SCHMIDT
- CASCADED BLOCKED GRAM-SCHMIDT

Figure 20. Simulated data:

1. Number of weights 35

2. No tapped delays

3. Number of jammers 10

4. Location and power of jammers:
'1 (-70.5-, 9.0 dR) "6 (-41.1-, 4,0 dR)
02 (-62.3', 8.0 dB) 07 (-36.9', 3.0 dR)
-3 (-55.95c, 7.0 dR) #8 (-32.9-, 2.0 dB)

M4 (-50.50, 6.0 dB) #9 (-29.1>, 1.0 dP3)
4 #5 (-45.60, 5.0 dB) !I0(-25.4-, 0 dR)

5. Ratio of power of stronnest jammer to receiver
,1 noise power = 27 dB.

61

50 60 70 80 90 100 10 20 30 40 50 60 70 90 90 200

w-

. CHOLESKY
EXPONENTIAL GRA-M-SCHMIT, WEIGHT .25

- BLOCKED GR AM-SCHMIDTS. - -BOKDG~b-Ci O

50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 200

Figure 21. Simulated data:

1. Number of weights = 50

2. No tapped delays

3. Number of jammers = 20

4. Location and power of jammers:
#1 (-73.7°, 9.5 dB) 411 (-34.o5, 4.5 d6)
q2 (-66.9, 9.0 dfB -12 (-313o. 4.0 dB)
#3 -61.60, 8.5 dB) #13 (-28.7', 3.5 dB)
#4 (-57.1, 8.0 dR #14 (-26.1', 3.0 dB)
#5 (.-53.1 °, 7.5 dB) #15 (-23.6-, 2.5 dB)
#6 (-49.50, 7.0 dB) #16 (-21.1, 2.0 dB)
#7 (-46.00, 6.5 dB) #17 (-18.70, 1.5 dB)
#8 (-42.8", 6.0 dB) f18 (-16.3', 1.0 dB)
#9 (-39.8 ° , 5.5 dB) 19 (-13.9 °, 0.5 dB)
#10(-36.9-, 5.0 dB) #20 (-I1.5 °, 0 dB)

, 5. Ratio of power of stronaest jammer to receiver noise
power - 20 dB.

62

3.2 FAULT TOLERANCE AND NOISE SENSITIVITY

In this section we analyze the effect of the system's different

failure modes on performance, as measured by the SNR.

External Failure Mode

The first category of failure mode is external, which means that

although the processor array is functioning normally, somethinq is wrong with

the antenna/receiver subsystem supDlying inputs. The possible failures we

examine are 1) input j is zero (others normal), 2) input j is a nonzero

constant (others normal), and 3) Gaussian noise of power i, is added to input

J (others normal).

When the input j is zero, the system continues to function, computing

the correct weights for an n-l weight system and a zero weight for input j.

To verify this phenomenon, note that all the wi1 values, 1 i j-l, are zero,

because (in the notation of Figure 5) wi* = + i(k) • Z (k) and Z I is

zero, so w is zero, Z.2 is zero, w2j is zero, and so on. Thus, Z3 0,

and (with the odd convention that 1/0=0) we have wji = 0, jl < i < n, since wi

is i -ZJ Zj = wji (1/0) = 0. Thus the values computed in columns j+l to

n of the array have nothing subtracted from them in row j of the array: They

are independent of input j. Since the values computed in columns 1 to J-i

are obviously independent of column j, all the other compuLe: values are

computed correctly as though input j were missing. Since I/w- is taken to

be zero, and the output at port j on the right of the array is multiplied by

1/wjj, we see the system operates as claimed for the transform space and unit

vector methods, because they get a zero rontrihution from output j and only

operate the array in the forward direction discussed above in this paragraph.

To see that reverse flow also operates normally, note that the zero input at

port j on the right remains zero as it roves left across the array (since the

63

w ji's in row j are zero) and when it is broadcast vertically by P.jJ+1 ' it has

no effect on the values computed by rows 1 to j-l. Since rows j+1 to n are

similarly unaffected, we see all weights except j are computed normally, and

weight j is zero as desired.

The optimal SNR of the n-l weight system can be expressed in terms of

the old optimal SNR with n weights, the jth optimal weight wj (when all n

are available) and m3j = 1 th diagonal element of the inverse of the true n x n

covariance matrix:

SNRNEWOPT = SNROLDOPT (19)

This result will be derived later.

When input j is a nonzero constant, a similar analysis shows incorrect

weights are computed. Approximately 0 values for wij in column j are computed,

since Z . is Gaussian with zero mean. Thus Z is constant and nonzero, and
i

I/w.j is nonzero. The values of wji in row j are again approximately zero,

but output j, even after multiplication by I/w jremains approximately con-

stant and nonzero. Thus incorrect values are computed by all three methods.

To examine the case of Gaussian noise, we need some general

results on the effects of perturbations in the weights on the SNR. These

results are derived in Appendix B and presented below.

The SNR is given by:

SNR w = IS*WI2/W*MW (20)

where SNRW is the SNR achieved using W as weights. When using the optimal

weights, WopT : M S, we have

SNROPT :S*W = W*MW S*M-IS (21)

64

Suppose that W = WOPT + E, where E is an error vector. Then we may write

SNRW in two equivalent forms:

SN i E*ME' E*ME
SNRW = _ E*SNRopT + E* • SNRE

= SNRopT - E*(M - SS* P)E SNROPT (22)OP SNR OPTE• WMW (2

The first expression for SNRW shows it is a weighted linear combination of

SNROPT and SNRE, and the second expression shows how the degradation in SNR

depends on the eigenvalues and eigenvectors of the positive semidefinite

Hermitian matrix (M - SS*/SNROPT). In particular, a lower bound for SNRW is

SNRw > SNROPT - Xmax(M) • IIEH 2 + O(1 EI 3) , (23)

which shows that the SNRW depends quadratically on E, and is worse if the

largest eigenvalue of M, Xmax(M), is large. The bound on Eq. (23) can be

attained if S is orthogonal to the einenvector of 11 belonginq to ,max(M),

and if E is proportional to it. Physically, since eiqenvectors of the

covariance matrix M are the expected signal of noise sources and the einen-

value is the power of the noise source, the worst dearadation in SNR shoud

occur when the steering signal S is aiminr the array in a direction ortho-

gonal to the strongest noise source but F is air-iinq exactly in the direction

of Lhe strongest noise source.

We may also examine the effects or nerturbations on arbitrary

(nonoptimal) weights W. Suppose that instead of W weights, W=.+E are

used. Then the new SNR using W is

'. SNR: SNRW - 2 WNM Re M -SN* W + O(IIEl 2) (24)

65

where the quadratic and higher-order terms are indicated by O(1IEI
2).

Now the dependence on E is linear, with the effect on SNR being largest

when E is proportional to (SS*-SNRw.M)W (the SNR can increase or decrease),

and to a linear approximation lies in the range

SNRN 2SNR• (- SS*) W E SNR < NRW

+ 2SNRw I *I(M- SS I I EI (25)

When E is orthogonal to (M - SS*/SNRw)W, the dependence of SNR on E is

quadratic. Thus,

SNRW = linear terms in Eq. (20)

+ N Re .4Re.W*ME) W* -EW _

+ higher-order terms in H EJM (26)

When W = WOPT, Eq. (26) simplifies to Eq. (23).

Now let us return to the specific problems of Gaussian noise of power

p being added to input j. (The following results are also derived in

Appendix B). Adding this noise is equivalent to addino p to the jth

diagonal elements of the true covariance matrix M to get the new matrix M,

M M+A, where Ak = {p if k=Z=j,O otherwise}. We may express in terms
of 1-I if nl~ tewse.W a xresM i em

of [0

.M-I = M-I + M.---_) [mJ ." J . th row (27)1+om j j

0

66

-V-.- . -- ---- - ----

where M = {mij} and M- {m1 i}. Thus the new weights W = M-S can be

expressed in terms of the old weights

WW+Mm (J-J) 1wj .t row (28)

Hence the new weights are the sum of the old weights and the j th column of

M-1 times -pw /0l + pmJJ). In particular, the new jth weight

wj = wj/(l + pmj)

So as p increases, w. decreases, approximately in proportion to 1/p for p

large. As p approaches infinity, wj approaches zero and the system operates

as though there were only n-l weights, because all the information in

channel j is being obscured by the large notse.

We must now distinguish between two subcases, depending on when the

noise is added to the system. Case 1 occurs when the noise is added by the

antenna/receiver subsystem, so that the sample's voltage vectors used to

compute the filter functions also contain noise, and case 2 occurs when the

noise is added later, thus affecting the weights only and not the sample

voltages for the filter function. In the first case, where the noise is

present from the beginning, it is as though the true covariance matrix of the

noise process changes (by adding p to the diagonal); in the second case, the

true covariance matrix remains the same, but the weights change.

In the first case, we can compute the optimal SNR of the new system

with noise SNRNEWOPTS*M S using Eq, (23):

SNRNEWOPT SNROLDOPT [PlwjI2/(l + 3mj] (29)

67

Thus, the optimal SNR achievable with noise p added varies as shown in

Figure 22. For p small it decreases approximately linearly with a slope

of -jw j 2. If jwjj is large, then system performance depends heavilytf

on the jth channel; hence, adding noise to that channel is particularly

bad. Also, if mJJ is small, then the lower bound for SNRNEWOPT,

SNROLDOPT.- (Iwji2/mJj), is small.

SNROLDOPT Sp -3

SNRNEWOPT = 2

SNROLDOPT -

Noise

Figure 22. Effect of added noise on optimal SNR.

In fact, if S = ej = {O,...,O,l,O,...,O} (1 in jth place),then

SNRopT mij and wj m j . Then SNRNEwOPT = 1/(p + I/SNRoLDOPT), which

approaches 0 as p approaches infinity.

It is possible to make a physical interpretation of mij being

small. Mathematically, it means the covariance matrix Mn-M has an eigen-

vector approximately equal to e1 = (0,...,0,lO,...,O) (1 in jth entry) whose

68

corresponding eigenvalue is large, which the matrix Mn 1 = M with jth row and

.th column removed does not have. Physically, this means the n weight system

with matrix M n is capable of adapting to a strong noise source, with steering

signal ej, whereas the n-l weight system with matrix Mn_ cannot. Sincen-Il

m :1 X kj(Mn-1) nX i(Mn)j~l ,ij1

(.x) = jth eigenvalue of matrix x), m3j will be small if this relationship

of eigenvalues and vectors of Mn and Mn- 1 holds. In other words, m j is

small if the jth channel is important for the system to be able to adapt

to some large noise source. The system will then be especially sensitive

to noise in that channel.

In the second case, where noise is added late so that it affects

the weight computations but not the true covariance matrix M, we may use

Eqs. (22), (24), and (25) to analyze system performance. Assuming that

the weights used after perturbations are the optimal weights for the noise

field seen by the array, i.e., = M-Is we may use Eqs. (21) and (26) to

compute the new SNR :

SNR = SNRopT -P 21w.1
2 mJJ4SNROPT(l + pmJJ)

2

p2,wj 12(2 + pmJJ)]. [SNROPT - 1wjI2/m j j 1 (30)

Note that w i SNR Es where E = W -OP T SNR is a decreasing

function of p, with a lower bound of

SNR > SNROPT -(,Wj,2/m j j) (31)

69

which is the same lower bound as for SNRNEWOPT, given in Eq. (25).

Thus, if an infinite amount of noise is added to channel j, effectively

turning the system into an n-l weight system, the degradation in SNR can

be bounded independent of where in the system the noise is added. In both

cases, a large jth weight JwjJ or a small mij indicatesthe system is

particularly sensitive to noise in that channel. This analysis also proves

Eq. (16).

We now present some simulation results of adding noise to a 5-weight

system with 3 jammers. Figure 23 is a control case with no noise added.

The total noise power (summed over all inputs to which noise is added) is

4 dB above the strongest jammer. These results correspond to case 2 of

the above discussion, where the noise affects the weight calculation only.

Apparently, inputs 2 and 3(Figures 25 and 26) are very insensitive

to noise; inputs 1 and 4 (Figures 24 and 27) are somewhat sensitive; and

input 5 (Figure 28) is very sensitive. This sensitivity was determined by

looking at the steady-state cancellation for either G-S or Cholesky (i.e.,

performance degradation for 20 samples). Since the steering signal for these

latter simulations is (0,0,0,0,1), i.e., an SLC with channel 5 as the main,

channel 5 should, by far, be the most sensitive. The other inputs are not

as sensitive. Since there are only 3 jammers, as long as only one input

is affected enough degrees of freedom remain to effectively cancel the

jammers (unless, of course, channel 5 is affected). When 3, 4, or 5 channels

are affected (as in the last three plots, Fioures 29 through 31), so that

there are not enough degrees of freedom to cancel the jammers and the extra

*noise, performance degrades markedly.

70

-- ChOLEAY
-EXPONENTIAL GRAM-SCHMIOT, WE:G6,T .2

HOCKED GRA-SC MIDT
C'-ASCADED IMLCKED GRAM-SCH*1IOT

.7.-

Figure 23. Simulated data:

1. Number of weights =5

2. No tapped delays

3. Number of jammiers =3

4. Location and power of jammers:
#1 (-36.9', 6.67 dB)
#2 (-11.5', 3.33 dB)

4 #3 (+11.50, 0 dB)

5. Ratio of power of strongest jammer to receiver
noise power = 40 dB

6. No noise added.

71

__- -

I

--CHOLESKY

+ -EXPONENTIAL GRAM-SCHM4IDT, WEIGHT =.25
-BLOCKED GRAM'-SCHMIDT

O CASCADED BLOCKED GRAM4-SCHM[DT

NBER 7 R ~ RI

Figure 24. Simulated data:
1. Number of weights =5

2. No tapped delays

3. Number of jammers = 3
4. Location and power of jamimers:

#1 (-36.90, 6.67 dB)

#3 (+11.50, 0 dB)

5. Ratio of power of strongest jammer to receiver
noise power = 40 dB

6. Noise added to channel I of total power
4 dB above stronqest jammier.

72

- -CHOLESKY

-EXPONEN71AL GRAM-SCHN!DT, WEIGHT .2
- -BLOCKEC GRAM-SCHMIDT

- - CASCADEJ BLOCKED GRAM1-SCHMIDT

Figure 25. Simulated data:

1. Number of weights = 5

2. No tapped delays

3. Number of jammers = 3
0 4. Location and power of jammers:

#1 (-36.9-, 6.67 dB)
#2 (-11.5-, 3.33 dB)
#3 (+11.50, 0 dB)

5. Ratio of power of strongest jammer to receiver
noise power =40 dB.

6. Noise added to channel 2 of total power
4 dB above the strongest jammer.

73

~1 - CHOLESKY

-- EXPONENJTIAL GRAM1-SCHMIDT, !WEIlHT .25
B LOCKED GRAM~-SCIDT

- <C' CASCADED BLOCKED GRAM-SCHt'IIDT -

Figure 26. Simulated data:

1. Number of weights = 5

2. No tapped delays

3. Number of jammers = 3

4. Location and power of jammers:

#1 (-36.90, 6.67 dB)
#2 (-11.5', 3.33 dB)
#3 (+11.50, 0 dB)

45. Ratio of power of strongest jammer to receiver
noise power = 40 dR

6. Noise added to channel 3 of total owoer
4 d8 above strongjest jammner.

74

CHLESKY
- EXPONENTIAL GRA:.-S'AM12T, WEiT 5

BL.CKED A:!-'CHMiDT

-9-ACASE LC.ADU ~,~JT ____-

Figure 27. Simulated data:

1. Number of weights = 5

2. No tapped delays

3. Number of jammers = 3

4. Location and power of jammers:

#1 (-36.90, 6.67 dB)
#2 -1I 5o, 3.33 dB)
#3 +1150 , 0 dB)

5. Ratio of power of strongest jammer to receiver

noise power = 40 dB

6. Noise added to channel 4 of total powerI4 dB above strongest jammer.

75

L/

-: *'. / -

CH)LESKY

- EXPONENTIAL 3RAM-SCHt1EDT, WEIShT :.25
B.OCKSD SR- I-SClIIT

_ _ _ _ _ _ _ _ CASCADED BLGCKED SRAM-SCH4iLT

Figure 28. Simulated data:

1. Number of weights = 5

2. No tapped delays

3. Number of jammers = 3

4. Location and power of jammers-
#1 (-36,9°, 6,67 dB)
#2 (-11.5', 3.33 dB)
#3 (+11.50, 0 dB)

5. Ratio of power of strongest jammer to receiver
noise power = 40 dB

6. Noise added to channel 5 of total pcwer
4 dB above strongest jammer.

76

,HOLESK.,

BLO:KED v~-cTKE-
2$SCAOE:; L.KE: S .- ..i

Figure 29. Simulated data:

1. Number of weights = 5

2. No tapped delays

3. Number of jammers
= 3

4. Location and power of jammers:

#1 (-36.9 "-, 6.67 dB)
#2 (-11.5V , 3.33 dB)

#3 (+11.5 c, 0 dB)

5. Ratio of power of stronnest jamper to receiver
noise power = 40 dB

6. Noise added to channels 1, 2, 3 of total power
4 dB above stronqest Jammer.

77

- - #SESKY HEGT= 2
-- ?ONENTIAL SPAI-SCH:w3T, WEIGHT -

BLOCKED GA4-SCHM IT-

Figure 30. Simulated data:

1. Number of weights = 5

2. No tapped delays

3. Number of jammers = 3

4. Location and power of jammers:
#1 (-36.90, 6.67 dB)
#2 (-I1.5 ° , 3.33 dB)
#3 (+11.50, 0 dB)

5. Ratio of power of stronqest jammer to receiver
noise power = 40 dB

6. Noise added to channels 1, 2, 3, and 4 of total
power 4 dB above stronqest Jammer.

78

- - -. _ _ -- 1

- N]

2 2 - -
-

-

CH LESKY
EX ONEIT!AL GmE-ISCiw-DT, .EGHT =.5

BLOCKED IAXI-SCHWZT
- CC~Efl BLaCX.EL -{S..Afl

Figure 31. Simulated data:

1. Number of weights = 5

2. No tapped delays

3. Number of jammers = 3

4. Location and power of jammers:

#1 (-36.90, 6.67 dB)
#2 (-II.5 °, 3.33 dB)
#3 (+11.50, 0 dB)

5. Ratio of power of strongest jammer to receiver

noise power = 40 dB

6. Noise added to channels 1, 2, 3, 4, and 5 of
total power 4 dB above strongest jammer.

79

--f..I 'ii iiIi-... ...

Internal Failure Mode

In the inte-°Lal failure mode, processor Pij outputs only constants.

This case is similar to the external failure mode where input j is constant.

Consider first the case where the output of P is identically zero. Outputs

ij

1 to j-l remain unaffected. As in the external case, all the WkjS and

outputs of Pkj for k>i are zero; so, w is zero, and the rest of the array

(rows j to n-l) operate as though the zero had been input at the very top of

column j, and we have normal n-l weight operation. The reverse flow situtation

is similar, so that if P.. fails by outputting only zero, it is equivalent tol.J

the external failure situation, where the array operates correctly as an n-l

weight system. When Pij puts out a nonzero constant, incorrect weights are

calculated, as with the external failure mode.

80

3.3 GROWTH OF INTERMEDIATE RESULTS

In this section, we derive probabilistic bounds on the growth of

intermediate results during the computations.

We first consider the algorithm without square roots and using block

averaging. We further subdivide the case into the situation where I) the actual

covariance matrix M is known (Figure 4a) and 2) where only samples are known

(Figure 5a). When M is known, we have the following bounds on the Zl(k)'s:

i < Zi(k) < n k>i; these bounds are sharo (32a)"
mi- Zk - max -

IZj(k)l< 2 - m sharp within a factor of 4 (32b)

IZk(k)I < mmax; sharp within a factor of 2 (32c)

< mmin sharp within a factor of 2 (32d)

whcre

mmax = maxlmi 1 (M :{mij ,
ij

Xmin = smallest eigenvalue of M, and

Xmax = largest eigenvalue of M

The value mmax can be bounded simply by using the number of bits and

normalization used for each sample,and the number of samples used. If the largest

2sample value is X (in absolute value), and S samples are used, mmax SX . Note

that the sample matrix is S times as larqe as the true matrix (S = number of

* 4 samples); because we do not divide the inner products, we calculate by S. The

m max used here is the maximum possible entry of the sample matrix and is S

times as large as the maximum possible entry of the actual matrix.

81

Figure 32 plots the number of bits required to represent E 1xi 2 where
r=l

lxi <127 (8-bit 2's complement representation). This plot puts an upper

bound on the number of bits required to represent inner products. The simplest

a priori bound on Amax is n-mmax; once the matrix is computed, the norms JMIIl,

I1M1I., and tr (M) (trace M) (see Isaacson and Keller [1966]*)also provide

upper bounds to 2max* A lower bound for min is provided by the level of

receiver noise. Typically, ADC's (analog-to-diital converters, used to digi-

tize the voltage inputs) are adjusted so that the receiver noise causes the

least significant bit of the converted signal to be random; the receiver

noise is therefore close to S22 tx2 , where t is the number of bits used in

the ADC (this approximation may be off by a system-dependent factor close to

1). Thus 1wij i < SX/S2 -2tx2 = 2t .

When using samples to compute the w.j's, we use the statistical inter-

pretation of the receiver inputs being complex Gaussian random variables

with zero mean and covariance matrix M. The intermediate quantities Z'Vi(k)3

are then also Gaussian random variables with zero means and computable

variances. The quantity w has a complicated distribution, but for many

samples we can approximate it by a Gaussian distribution, and is similarly

very close to a X2 variable. The quotient of the two quantities,

= wij/wij, also has a complicated distribution, and for this analysis we

replace it by its expected value. The results are as follows:

Z'R(k) is a Gaussian rardom variable with zero means and variance

var[Z'I(k)] = Z'(j), where Z1 (j) is computed as though the actual
3 :1

E. Isaacson and H. B. Keller, Analysis of Nunierical Methods,
New York, John Wiley & Sons, Inc., 1966.

82

I.I

F-

-- z

71

II - 4.---

- - C '

11 -

U -Z

-- i -

2a27 21

83

sample covariance matrix were being passed through. Thus

a i m using the results of Eq. (32).mnSvar[Z J(k)] < mmax ,min

2. wi. is approximately Gaussian with mean E(i
= Z.(i) (again

as though the actual matrix were being passed);

so JE(ij) <m ,max, and variance var(ij) < 2-m2ax/S (S = number

of samples).

3. WiJ is approximately X with S degrees of freedom, a mean of

E(ij) = ZI(i); so IE(ij)j <mmax and variance

varij) 2- max/S.

Thus, it is a simple matter to calculate the probability of overflow1i

of the Z J(k)'s as a function of the number of bits, b, used to represent the

ZJ(k)'s in fixed point (where N(O,l) is a standard normal random variable):

Probability of overflow < P(IN(OI) >2b/v'M-x)

If we let C = b - logm- = number of extra bits used beyond those needed102max

to represent va, we can make the following table:

C 0 1 2 3

Probability of
overflow <31.8% <4.55% <6.34x0 3% I.24xl0 13%

We see that as C increases, the chances for overflow become negligible quickly.

Similarly, if C is the number of extra bits beyond those needed to

represent mmax, then the probability of jverflow when representing wij is

Probability of overflow _4 P[IN(0,1)I > I (2C-I]

The following table evaluates the above function for various values of C and

S.

84

-" . . * -m m

C

S1 2 3

5
1 48.0% 3.6% 7.42xi0- %

2 31.7% 0.27% 2.58xi0-I0%

4 15.7% 2.14xi0-3% -2.xi0-21%

32 6.33x0 -3% 3.56xi0-31% -10-170%

400 1.59x10-42% -i0-383% _10-2171

Again, the probability of overflow becomes negligible quickly.

If C is the number of extra bits needed beyond those to represent mmax,

then for the probability of overflow when computing wij to be <10 - , we need

the following number of extra bits:

C 3 2 1

Range of S 1-3 4-48 49-a

C 2
This may be derived using [P(wij > 2 m) =

remmbeedmax) P(X 5 2Cs)]"

Finally, when passing a steering vector through the array, it must be

remembered that if S is an eigenvector of M corresponding to Xmin' then

W = M- (I/Xmin)S, so that quantities on the order of 1/Xmin must be

introduced in the computation. These numbers of magnitudes potentially

much larger than those already discussed can be introduced either during
• ,ii

division by <Z ,Z > at the right of the array or during back substitution.

Thus the unit-vector and transform-space methods miqht have an advantage over(the reverse flow method because they do not require passing numbers as large

85

as l/Amin back through the array. The unit vector method, of course, passes

numbers as large as Im A max lwij through the array. Still, themax min) lj
transform space method and unit vector method might be able to use the simpler

fixed-point arithmietic in the triangular array and then only have floating

points in the outboard processors.

The analysis of the method with square roots is very similar to the

above analysis. The Z J(k)'s, wij , and wii have the same distributions as

before, but the]/Vii quantity broadcast is new. It is easy to derive its
z z x2

distribution from that of wij. In fact, since wii is with S degrees of

freedom and mean between Xmin and m max, we have the probability that the most

significant digit of I/,wii is more than C bits to the right of the most

significant bit of I/vm- is
max

P(lAi < 2-C' 1 mmax)< P (x > S22C)

which is very small, as can be seen from the last table. Also, the probability

that I/IW 7 will need more than C bits more than 1/v7Xm n is11 min

~(1q~.>2cmax -

which is also very small for C=l and S>20 (probability < 2.8xlO2 ,1.

I

. The results presented in this section are proved in Appendix G.I

o86

3.4 GRAM-SCHMIDT PROCESSING WITH O(n) PROCESSORS

The Gram-Schmidt array with O(n2) processors can also be implemented

with only O(n) processors. This implementation can be performed by collapsing

the array in the vertical, horizontal, or diagonal dimension (Figure 33); i.e.,

letting the work of all processors in a column, in a row, or along a diagonal

be performed by a single processor.

Each processor performs the same calculations as the processors in the

2O(n) array but on multiple data sets. Three main differences between the

three O(n) implementations are: 1) work is not equally shared by the proces-

sors; 2) they have different internal-memory requirements; and 3) the output

may be routed internally to the same processor or externally to another

processor. All of these will be discussed in more detail. The processor

diagram for O(n) processors is shown in Figure 34.

As can be see6 in Figure 33 for the case of four inputs, one processor

must perform the work of from one to three processors of the original O(n2)

implementation. This mismatch is increased as n increases. If W is the amount

of work that one processor in an O(n 2) array must perform, then the amount of

work for a processor in an O(n) configuration can range from W to (n-l)W.

Since the total time in a parallel system is determined by the slowest

processor, then, on the average, half of the processors are idle.

The internal memory for each processor must be increased because it

must store all of the information required for the calculations to be per-

formed. This memory increase should, however, be small, mainly the inputs

and internal weights, which amount to approximately 4(n-l) complex words.I

In an O(n 2) array, each processor is independent of its position. In

an O(n) array, however, the processors must be "aware" of the interconnect

87

I a. Vertical collapsing.

L --

b. Horizontal collapsing.

c. Diagonal collapsing.

Figure 33. Collapsing an array into O(n) processors. The boxes
represent work performed by a processor.

88

*1!

a. Standard configuration.

b. Alternative configuration for symmetry.

Figure 34. Configuration using O(n) processors.

89

structure so that they will know where to transfer the processor data. The

controller can handle this requirement by specifying the routing and, as

Figure 34 shows, all routing is regular. The routing problem is not serious

and should not prevent consideration of this method.

3.4.1 Advantages and Disadvantages

The obvious disadvantage of O(n) processors is speed. The actual

timing models are developed in Appendix E, but time is a function of many

variables. In a block average system, most of the time is spent calculating

2the internal weights; in this case, an O(n) system is comparable to an O(n

system (in actual practice, O(n) and O(n2) systems can be equal). The O(n2)

system is advantageous when there are a large number of steering vectors.

The determination of which system to use should be based on the relationship

between the number of samples, S, and the number of steering vectors. K.

Fault tolerance and reliability offer potential advantages and dis-

advantages. The O(n) system can be much more reliable because of fewer parts;

however, because of the increased demand on each processor, faster hardware

operating in critical conditions may be required.

3.4.2 Tradeoffs Between the Three O(n) Designs

Which system, from Figure 33, should be used in a radar installation

depends on many factors. We discuss briefly the major tradeoffs for each

array.

- Since Section 3.2 showed that if any column of the array became error-

prone or stopped working, the system could still operate, the system in

Figure 33a would be chosen for fault tolerance because one processor

corresponds to one column. In the system in Figure 33b, if the first

7processor went bad, the entire system would become ineffective which is also

true of that in Figure 33c.

90

Diagonal collapsing, Figure 33c, has the advantage of being able to

implement reverse flow without requiring backward busses. This implementation

is accomplished by transposing the internal weights and using forward flow.

The transposition is simple because each processor contains all the internal

weights for the transposition (Figure 35). This transposition is more dif-

ficult for the other configurations, but reverse-flow busscs are cheaper to

implement for O(n) systems because of fewer processors.

.1

I% a

AD-A084 202 TECHNOLOGY SERVICE CORP SANTA MONICA CALIF F/6 17/9
BRAM-SCHMIDT ADAPTIVE ALBORITHMS. (U)
MAR B0 V C LILES, .J W DEMMEL. L E BRENNAN F30602-7B-C-0271

UNCLASSIFIED TSC-PD-B618-1 RADC-TR-79-319 NL

IIMEOIIII...
EIIIMMONSIl-EllllllllEEI

'EhhIIIIIIl
III lll um~

11111 jj

D111=

wl '1 '1

n~ 4

w 3

Transpose i nf + 2-
j .n + 2 -i

wi1

Figure 35. Transposing internal weights.

92

3.5 PROCESSOR INTERNAL PIPELINE/PARALLELISM

Each processor must compute the inner product of its two inputs in order

to compute the internal weights. Once the internal weight has been computed,

it is applied against the processor inputs to compute the outputs. In this

section we discuss different methods of implementing these computations. Block

averaging is assumed. Complex multiplication is performed with 4 multiplies

and 2 adds. Complex addition is performed with 2 adds.

3.5.1 Compute Inner Product

The mathematical formula for calculating the numerator to determine the

weights is

S ,
X Y

i=l

where X and Y are input samples and S is the number of samples. Typically

S > 2n, where n is the number of adaptive weights. The primitive operations

consist of multiply and add/sub. Let the time per operation be t. Input time

is assumed to be 1/2t.

The techniques examined are:

Sequential

Sequential with overlap

Full pipeline

Parallel/2 multipliers

Parallel/4 multipliers

Pipeline/2 parallel multipliers

Pipeline/4 parallel multipliers

Optimal

Table I provides a comparison of the numerators computed by the above

implementation techniques.
93

.AM
I

A>

(U x

L.i

CL)
-

L)
Lii

Gi

(n

V). 4 .) 4) 4) 4J 4) 4)

LIi

-4-

0 C)C c .ul ~
a-

4--'4

V) ~ V # ~ U) I'

C) m)4) 4

0 *i401 ~~Ll .

(0.0

-a LM

GD

o 0to

0)
S- In .- t CL r .

L) V C

o 4.4

Sequential

In this case we have one multiplier and one adder with no overlap:

read X real
read X imaginary
read Y real
read Y imaginary
multiply XR YR

multiply XT YI

add
add add to running sum real
multiply XR YI

multiply XI YR

add
add add to running sum imaginary

Number of multipliers: I
Number of adders: 1
Time for 5 samples: 10 St
Time between samples: 10 t

Sequential with Overlap

This is a slight modification of the sequential method, but the adder

and multiplier are separate functional units, which enables both to be used simul-

taneously:

read X real add XIYR + XRY I from previous sample
read X imaginary
read Y real add to running sum imaginary
read Y imaginary
multiply XR YR

multiply X1 YI

multiply XR YI add XRYR + XIY I

multiply XI YR add to running sum real

Number of multipliers: 1
Number of adders: 1
Time for S samples: (6S +2)t
Time between samples.: 6t

95

Full Pipeline

This method is similar to sequential, except that each stage is implemented

so that multiple data streams can be executed simultaneously. We must also change

the I/O either by transferring 2 words in parallel on each bus or making the

bus operate at time 1/2t. We chose the latter for this analysis.

read X real
read X imaginary
read Y real
read Y imaginary
multiply XR YR

multiply X1 Y1
add
add
multiply XR YI

multiply X1 Y R

add
. *add

No. of multipliers:. 4
No. of adders: 4
Time for S samples: 10t + (S-l)t
Time between samples: t

Parallel/2 Multipliers

Since complex multiply can be done in parallel, we connect two multipliers

in parallel:

read XR
read XIread YR
read YI

multiply
add

* add
multiply
add
add
No. of multipliers: 2
No. of adders: 1
Time for S samples: 8St
Time between samples: 8t

96

Parallel/4 Multipliers

The next modification is to implement a 4-word-wide multiplier and a

2-word-wide adder.

read XR
read XI

read X

read Y

multiply
add
multiply
add
add

No. of multipliers: 4
No. of adders: 4
Time for S samples: 7St
Time between samples: 7t

Pipeline/2 Parallel Multipliers

This is the pipeline method with 2 parallel multipliers at the

multiplier stages:

read XR

read XI

read YR

read YI

multiply
add
add
multiply
add
add

No. of multipliers: 4
No. of adders: 4
Time for S samples: 8t + (S-l)t
Time between samples: t

Note that in this case the number of multipliers has not been increased, and

time saved is only 2t, buth with added processor complexity.

97

I ' i

Pipeline/4 Parallel Multipliers

This method has a full complex multiplier (4 multipliers) and complex

adder (2 adders) implemented in parallel.

read XR

read XI

read YR

read YI

multiply
add
add

No. of multipliers: 4
No. of adders: 4
Time for S samples: 5t + (S-l)t
Time between samples: t

For the large additional complexity in the processor, this method is only 5t

faster than full pipelined and 3t faster than the pipeline/2 parallel multi-

plier method.

Optimal

The parallel and pipeline methods explained above can take advantage

of overlap simultaneously, as in the sequential method. The minimum system would

use overlap in a full parallel sense. This system would look as follows for

time slice ti

read XR(t)

read YR(tt)

multiply for ti- l
add for ti. 2

- add for ti 3read Xl(t i)

read Yi(ti)

No. of multipliers: 4
r1 No. of adders: 4

98

Time for S samples: 4t + (S-lit

Time between samples: t

The time for S samples is only a savings of t over the previous method.

A graphical comparison of the times required by all the above methods

versus the number of samples is given in Figure 36.

3.5.2 Calculate Weights

In Section 3.5.1 we discuss the calculation of the numerator to

determine the weights. We now discuss the calculation of the denominator

and the division.
S

The denominator is calculated using the formula 3 X*X. Since X
iil

times its conjugate is a real number, only the real part needs to be computed.

This calculation can be performed either in parallel with the computation of

the numerator or in sequential order. We have the following table for

parallel computation (Table 2). The effective rate shown in Table 1 is

not always attained. If the denominator calculation is carried out in

parallel with the numerator calculation by separate processors, then the

sampling rate will be governed by the slowest of the two processes because

the data will be placed on the bus once for all processors. In the case of

the sequential processing we have a time between samples of lOt and 5t for

the denominator and numerator calculations,respectively. The actual

Vstemtime between samples will therefore be lOt. Because of this dependency

on the numerator calculation, we can use the same processor to compute the

denominator without serious time penalties. If the denominator is calculated

sequentially in the same processor as the numerator, time t can be saved on

pinputting the value X.

99

i'x-

06

cD C
*00

04-
to 4

44

£E

010

h* i'a

CL

E
'U

=3

4) LO 4.)
L 3

4-)

I- C

LJ 414J4-

4- +

4- LIn +- 4-) + +

V) C% 4-) V- 4--

0 O -LO-tK c

L)J

o) 4-I
OS 0-

0. 4)
I*- - C'J - @ C'J (U (\J

~U . -

< <

o) 0- 0. 0.

< 04-'
0a_ Zr

:-. - $ --

4.) 4-) (a. 1
*.7 *. @3 S- 'Un

I- *. M0 - - L @3) m3

4- 4-3 - - - - r- ~4 -. 'I ~~C a) E3~' U - 0

L/) C7 S-. 0 S.. CL 0X . 0m

101

- - - wM,

The division can be performed by reciprocal calculation and broadcasting

the value in the horizontal direction. Assuming no overlap, the time to

,compute the reciprocal is the time required to perform one table lookup and

two iterations of Newton-Raphson (see Appendix D). The program to find I/C

would be as follows:

Table lookup X estimate

Multiply CX1

Sub 2-CX1

Multiply (2-CXI)XI X2 new estimate

Multiply CX2

Sub 2-CX

Multiply (2-CX2)X2 X3
= 1/C

Time = 7t

To broadcast the value and multiply by the reciprocal in each processor

requires the following code in each processor:

Read reciprocal
Multiply

Time 2t

3.5.3 Apply Weight to Input Data

The formula to apply weights, w, is output = X - WY. This is the same

form as the inner-product calculation, which can be expressed as

sum = sum + XY

Because of this similarity the programs are similar, as shown by the sequential

method;

read XR

* read X

read YR

read YI

102

lqI

multiply W RYR

Multiply W IY1

sub

sub X R - (WRYR -W 1Y')

multiply W RYI

multiply WIYR

add

sub XI- (WRYI + WIYR)

out X R

out I

Assuming output takes time 1/2t, all of the previous formulas are

applicable if a step of t is added; i~e., 8t + (S-l)t becomes

8t + (S-l)t + t =9t + (S-lit.

103

o- iii_ M, I

r777

3.6 DESIGN ALTERNATIVES AND TRADEOFFS

This section summarizes the variety of system configurations described

in detail in the first part of this report (Sections 2.6 and 3.1 through 3.5),

and indicates how various radar engineering considerations might influence the

choice of configuration. Choosing the best configuration is a complicated

task and depends heavily on the details of a given radar system; therefore,

we only summarize some of the tradeoffs. In particular, we conclude that

while a universal element may exist, it might be far from optimal for any

individual system, since it would have to be designed for all possible worst-

case situations, and hence be very expensive, large, and power-consuming.

The different design alternatives are summarized in Table 3. (For

more details, see the indicated sections.)

The unit vector method requires simpler hardware than the reverse flow

method, but is slower, solving m n x n systems in time O(mn) instead of O(m+n).

The transform space method requires the simplest hardware, but every sample

from which filter functions are to be computed must be passed through the

array, which means there can be fewer filter function evaluations per unit

time than with the other two methods.

The different means of calculating the weights not only require dif-

ferent amounts of hardware (most for window averaging, least for cascaded

block) but have different statistical properties, requiring different numbers

of samples to converge or update old estimates, and with different lag times.

The higher performance desired, or the smaller probability of overflow

desired, the more bits are needed; and depending on the basic implementation

chosen, it may be possible to have fewer bits in one part of the processor

104

K

TABLE 3. DESIGN ALTERNATIVES

1) Basic Implementation (See Section 2.6)

a) Unit Vector Method

b) Reverse Flow Method

c) Transform Space Method

2) How to Compute Inner Products (See Section 3.1)

a) Block Averaging

b) Cascaded Block Averaging

c) Exponential Averaging

d) Window Averaging

e) Number of Samples

3) Arithmetic Used (See Section 3.3)

a) Fixed, Floating Point, Block Floating Point

b) Number of Bits

c) With or Without Square Roots

4) n Versus n2 Processor Implementation (See Section 3.4)

a) Horizontal, Vertical or Diagonal Collapsing

b) Unit Vector, Reverse Flow, or Transform Space Method

5) How to Implement Each Individual Processor (See Section 3.5)

105

105

than another, and even have different kinds of arithmetic (fixed versus

floating point) in different parts of the processor.

The choice between n and n2 processors depends on the speed desired and

cost considerations. The different O(n) implementations have different fault-

tolerance properties, require processors of differing complexities, and

differ in how compatible they are with the three basic implementations.

How to implement each individual processor also depends on the speed

required and cost limits, and is certainly dependent on the number of bits

and type of arithmetic chosen.

Some of the most important radar engineering factors affecting the

choice of system configuration are given in Table 4. We discuss how they

affect the choice, but remind the reader that the list is not meant to be

exhaustive, nor is there necessarily a single-best configuration for all

operating modes of a given radar system.

TABLE 4. RADAR ENGINEERING CONSIDERATIONS AFFECTING CHOICE
OF SYSTEM CONFIGURATION

1) Number of Weights
2) Sampling Rate
3) Electronic Versus Mechanical Scan
4) Operating Modes
5) Size of a PRI; Amount of Dead Time
6) Fully Adaptive Versus SLC
7) Number of Bits in the ADC
8) Amount of Clutter
9) Performance Required (in Terms of SNR Achieved)

10) Cost Requirements
11) Reliability Requirements
12) Environment

106

How fast the array must process depends on the number of weights,

sampling rate, type of scanning used, system mode, and the amount of dead

time. A higher sampling rate requires either a faster array or downsampling.

If the sampling rate is slow enough, the transform space method might be

sufficiently fast. If there are many steering signals for a given covariance

matrix (e.g., electronic scan), then reverse flow might be preferable to the

unit vector method. If there is a small sampling window and large amount of

dead time in each PRI, simple block averaging, with its long startup, might

be sufficient instead of a more expensive implementation like window averaging.

If overall speed requirements are low, n processors instead of n2 might

suffice.

If the system is a SLC instead of fully adaptive, some of the arith-

metic can be simplified.

More bits on the AUC means more expensive hardware to retain accuracy.

If there is so much clutter in the system that there are not enough weights

to adapt to it, then more than the usual 2n samples may be required to get

good performance. In general, the higher performance desired, the more bits

of accuracy and the more samples required.

The many design alternatives discussed have widely varying costs (n

versus n2 processors, and number of bits carried for example), so there are

many speed/accuracy/performance versus cost tradeoffs.

The different designs have different fault-tolerance properties, which

may also vary with the type of fabrication techniques used.

The radar environment will influence the design greatly. A land-based

system with large amounts of power, cooling, and spare parts available will

107

certainly have less stringent packaging, power, and reliability constraints

than one that is used in the field.

The dimension of the design space can be reduced for problems of

interest so that a universal adaptive algorithm (UAA) element does exist. One

such breakdown is shown in Table 5. For this radar system, the UAA element

would be near optimal for most configurations. For the 30-weight system,

21 bits are required; for the 50-weight system, 22 bits are required for inner-

product calculation. But due to MSI and LSI integration sizes, either a 22-bit

or even a 24-bit system would be implemented.

The system designer must decide which subset of all possible adaptive

systems the processors must support.

TABLE 5. SPECIFIC RADAR DESIGN PARAMETERS

1) Number of Weights - 30 to 50

2) Sampling Rate - 20 MHz

3) Electronic Scan

4) Search and Track Modes

5) Typical Times for Land-Based Surveillance Systems

6) Fully Adaptive

7) 8-Bit 2 Complement Complex ADC

8) Low Center

9) 3 to 8 dB Down from Optimal SNR

10) Low Cost

11) 24-Hour Continuous Duty Every Day

12) Land-Based Stationary Environment Constructed to Support
Processor

108

3.7 UNIVERSAL ALGORITHM HARDWARE IMPLEMENTATION

The Gram-Schmidt processor has a very simple interconnect structure

regardless of implementation. The bus structure for the pipelined (O(n
2))

configuration is shown in Figure 37. All buses have a single source, making

this configuration's the simplest interconnect protocol. The recursive

(O(n)) configuration is shown in Figure 38. It has a slightly more com-

plicated interconnect protocol because one interconnect bus has several

sources, which implies that each module must know when it should place its

data on the bus. This bus can be implemented with either open-collector or

tri-state logic. A comparison of the two configurations shows that each

processing element (PE) has the same inputs and outputs; thus, with the

addition of bus-sharing logic, a processor can be made to run in either

configuration.

The bus interconnects may be either one-half of a complex word wide or

a full complex word wide. The latter provides the potential for a higher

processing rate.

A variation combining the O(n2) and O(n) configurations may be imple-

mented. This variation is shown in Figure 39 for the five-input case. It

enables the system designer to meet the speed requirements without using more

hardware than is really needed, a good alternative solution for large n when

the O(n 2) configuration would contain a prohibitive number of processors.

The processor control is no more difficult than for the O(n) configuration.

The configuration chosen by the system designer is a function of 1) the

processor speed; 2) the number of degrees of freedom required; and 3) the

required processing rate, which, in general, will be slower than the sampling

rate.

109

0
Ln-

-~ (n.

0.

S-
o

.9-

4-

S-

U-

110

77 "MSZ-

Lfl

.0

- 0

Id.J

aj

g44A

4-)

NJ 4J

CL 4-4

1 :IET

r 0

NJ c)

0m

Z11 212 Z13 214 15

- .OUTPUTS

PE PE PE PE

PE PE z 33' z44

OUTPUT

Z5 5

Figure 39. Variation combining O(n
2) and O(n) configura-

tions. Five-input case is shown.

";

112

L t

The processor configuration is governed by the Gram-Schmidt equations,

shown in Figure 40. They have been broken down into their real and imaginary

components. The majority of the operations performed are add, subtract, and

multiply. Only one division is required after all the terms have been summed.

The divisor in all processors in a row will be identical. If this process is

moved to a dedicated module in each row, n-2 sets of redundant logic have been

removed from each row. This removal will reduce the amount of logic per PE,

reducing each PE's cost and mean-time-between-failures (MTBF). For a system

with a large number of degrees of freedom, this could result in considerable

savings in system cost and greatly improve the system's MTBF. The control

becomes no more difficult and the bus structure does not change for either

the O(n2) or O(n) configurations (Figures 41 and 42).

The configuration discussed in the paragraph above is expanded here to

show a possible hardware implementation. Two generic processing elements

are shown. First, the node processing element (NPE) computes all equations

except the divisor equation. This processor is present at all the rnodes in

the Gram-Schmidt array. The second processor, the diagonal processing element

(DPE), computes the divisor and its inverse, and then broadcasts the inverse

to the NPEs in its row. There is one DPE for each row of the Gram-Schmidt

array.

A block diagram for a node processing element (NPE) is shown in

Figure 43. This processor does not include the ability to calculate the

divisor. This NPE can perform block and exponential averaging. In addition,

it can operate in either the O(n2) or O(n) configurations. Because of its

generality, the NPE would not be practical to implement for use in a real

113

7 7 I

Block G-S Equations

ReG) = Re() +t Re(Zi)Re(Z i) + IM(zi)Ijn(Z i)

Ini(M - Im(M + Re(Zi)IM(Zi) - Im(Z 1)Re(Z i)

w = + L1 JiRet(L.) + IflUZ!JIm(1Zi)

Re(w) = Re(%)(1/§i)

Im(w) = IM(Q 0(/1f,)

Re(Zi~') = Re(Z?) - [Re (w)Re(Z!) -in(w)Im(Z!)]

Im(Zi~1) Im(Zi) - [Re(w)Im(ZI) + Im(w)Re(Zi)]

Exponential G-S Equations

Rewn R~w-IS+ [Re(Zi)Re(Z,) + -mz w)

Im(w)= Im(wn) + [Re(Z1.)IM Im(Zi s,,j,..I.l/ n-)(l -S)]

Wn= W- + [Re(Z i)Re(Zi) + Im(ZpIm(Zi)J(1 S)

Re(Z1.+1) - Re(Z') - [Re(wni)Re(Z)- Im(wn)(Z]

Im(Zi~ 1) = IM(Z i) - [Re(w 1 i(Z) + Im(wn1)Re(Z~)

Figure 40. Gram-Schmidt (G-S) equations

114

z1 z12 z 3Z 14

A B A B A B

P11 P12 P13

C C C

W1

A B A B

S22 P 23
C C

IW3

A B
P 33

C

2
1 - -----

Figure 41. Processor for the Q(n)configuration.

115

41a

s-

0

0

0

116~

E

- - ------- --

0 -117

system. The inherent cost advantages of using Gram-Schmidt would be can-

celled out.

The arithmetic operations performed within the NPE shown are serial in

nature. The processing speed of the NPE could be increased by adding parallel

computation abilities to the processing element. This parallelism could be

expanded to the point where every equation is implemented in parallel hardware.

Some middle ground between these two extremes, one that meets the processor

speed requirements, will usually be chosen.

The block diagram for the diagonal processing element (DPE) that com-

putes the common divisor is shown in Figure 44. This processor will operate

in the same modes as the NPE and would not be practical to implement because

of its generality. Examination of the block diagram reveals no functional

block representing division. This block is unnecessary because of the

following equation to calculate the inverse of a number:

C =2 - ABn

Bn =Bn-l C

where

A is the value whose inverse is to be found,

B is the inverse, and

C is the correction factor to the inverse.

This equation is computed recursively, approximately doubling the

4accuracy of the inverse on each iteration. The first value of the inverse is

118

N'

COMMON
BUS

Register Register

ConsFuant multi4pl er deig Pad

ROM
I Memo)ry Memo ry

1 _ _P

Inverse

1Register

TOCM

N

BUS

119

a coarse value found in a lookup table. These two processing elements form

the basis for the Gram-Schmidt processor. Their physical implementations

depend on the system requirements.

120

4. CONCLUSIONS

We have studied in detail the Gram-Schmidt orthogonalization technique

and modular architecture for its implementation. The analysis and simulations

show that for blocked average Gram-Schmidt, the Gram-Schmidt system is iden-

tical in performance to sample covariance matrix techniques, in particular,

Cholesky decomposition. This result shows that a universal adaptive algorithm

does exist with a modular architecture since the Cholesky method is universal.

Also, because the architecture is tailored to the Gram-Schmidt algorithm,

each processor performs simple operations of the form z = x + Ay. The

complexity of each processor is low, so that high throughput paths can be

achieved.

Figure 45 shows the timing curves for different Gram-Schmidt implemen-

tations. Figure 46 shows a banded region for Gram-Schmidt compared against

the timing curves determined under a previous RADC contract [Liles et al. 1978].

As can be seen from these figures, systems capable of real-time operation are

feasible.

Table 6 shows a summary of the conclusions of this study. We have

already discussed the first conclusion, the existence of a good universal

adaptive algorithm (UAA) which uses a minimum number of samples and has a

modular architecture.

The importance of the second conclusion is that while a UAA may exist,

it would have to be large, expensive, and power-hungry to satisfy the perfor-

mance requirements of all possible radar systems. For example, a land-based

system with 200 weights and a 20-mHz sampling rate, a stable, air-conditioned

*.W. C. Liles, J. W. Demmel, J. D. Mallett, I. S. Reed, and L. E. Brennan,
Multidomain Algorithm Evaluation, 2 volumes, TSC-PD-B525-1, Final Report on
RADC Contract F30603-76-C-0319, Technology Service Corporation, Santa Monica,
California, January 1978.

121

_&-

CZ

-0)

6-Aa
C-4-' 4A)

C.4-

S-
4-) a)

54

-S. (A

d, 4-4-
C 4-

AA 4-. 4-

,. 0
0) 4

0u 0)

4i- (L)

L)a)

SPUODB0stMLW

122

7I

- 0

0

So\

a \ 4-
\E

S ' 'S

00 S
-~0

Sn

CD0

SS I-.LLI

123

TABLE 6. CONCLUSIONS

1. Universal adaptive algorithm with modular architecture exists.

2. Universal adaptive algorithm implementation for subspt of all

adaptive space exists.

3. Fast implementations are possible (Figure 45).

4. Processors are simple.

5. Processors can be improved as hardware advances are made.

6. The processor array can be designed to have good fault-
tolerance properties.

7. Possible to get a priori probability bounds on growth of
intermediate results.

124

environment with ample space puts far different requirements on a UAA than

a 5-weight system small, cool, and light enough to carry on someone's back.

But given a reasonably uniform subset of system requirements, a UAA does exist

for that subset. A subset of interest is ground-based, permanent installations,

30 to 100 weights, high reliability, and adequate power supply. As advances

in digital electronics occur, the size of subset areas increases until a

universal implementation does exist.

One must remember that the algorithm, the processor interconnect

structure, and the general processor design are all universal. The only

thing which can change is particular implementations (number of bits, etc.)

of the processor.

The third conclusion dealing with speed has been discussed above and

is demonstrated by Figures 45 and 46.

The fourth conclusion deals with the complexity of a processor. Each

processor is very simple as shown in Sections 2 and 3.5. Because of this

simplicity and the advances of VLSI, shortly a processor on a chip will be

possible. Since the processor functions are well specified, as new hardware

becomes available, processors using the new components can be intermixed with

other processors without system degradation. This intermixing is due to

functional replacement on a processor level (conclusion 5).

Conclusion 6 deals with fault tolerance of the system. The Gram-

Schmidt array is no more susceptible to noise caused by misaligned or broken

converters, receivers, antennas, than any other technique. This was an

unexpected, but welcome, conclusion, since Gram-Schmidt implementations have

been shown to be prone to noise on digital computers. But due to our imple-

mentation of Gram-Schmidt and the nature of radar signals, the noise problem

125

is not a concern. Also, if any column of the array becomes bad, the system

loses one degree of freedom and remains operative--a condition known as

graceful degradation.

Conclusion 7 was the most difficult to arrive at, and more work should

be performed to sharpen the results. Conclusion 7 states that a priori

probability bounds on the internal Gram-Schmidt weights and interprocessor

communication can be determined. These bounds are used to determine the number

of bits used at different parts of the processing system, and what kind of

arithmetic (fixed point or floating point) needs to be performed in order to

avoid overflow/underflow and bound effects of roundoff error. In Section 3.3

we discuss in more detail the formulation of these bounds and actual number of

bits.

126

L

5. RECOMMENDATIONS

Given the results of this study, we feel confident that the modular

approach has benefits for the U.S. Air Force in the following areas: 1) logistics,

2) maintainability, 3) ease on new system design, and 4) low life cycle cost.

We believe that a Gram-Schmidt system of 0(n) processors should be

designed for high-speed updating of weights. The processor should be designed

to be integrated into a 30- to 100-weight system. This system would demonstrate

proof of concept and would serve as a test bed for further research. The

processor designed for an 0(n) configuration can also be used to study O(n2

array architectures; the inverse is not true. Thus, one processor can be

used to study both possible configurations.

The processor should accumulate internally at least 24 bits (preferably

32) and transmit to other processors 16 bits. The internal memory for I & Q

inputs should be at least 512 complex words.

127

REFERENCES

Berra, P. B. and A. K. Singhania, Timing Figures for Inverting Large
Matrices Containing Complex Numbers Using the Staran Associative Pro-
cessor, Rome Air Development Cente r, RADC-TR-76-339, Griffiss Air Force
Base, New York, November 1976, A034266.

Blakely, C., "PEPE Application to BMD Systems," Proceedinqs of the 1977
International Conference on Parallel Processing, August 26-27, 1977,
pp. 193-198.

Brennan, L. E., "Performance of the Sample Covariance Matrix Aloorithm for
Adaptive Arrays," unpublished manuscript, 19 July 1979.

Brennan, L. E., and I. S. Reed, "Theory of Adaptive Radar," IEEE Trans.
on Aerospace and Electronic Systems, Vol. AES-9, No. 2, 1973, pp. 237-
252.

Calahan, D. A., W. N. Joy, and D. A. Orbits, Preliminary Report on Results
of Matrix Benchmarks on Vector Processors, Systems Engineering Laboratory,
SEL Report No. 94, University of Michigan, Ann Arbor, May 24, 1976.

Chen, T. C., "Unconventional Superspeed Computer Systems," Spring Joint
Computer Conference, 1971, pp. 365-366.

"Parallelism, Pipelining, and Computer Efficiency,"
Computer Design, Vol. 10, 1971, pp.69-74.

Csanky, L., "Fast Parallel Matrix Inversion Algorithms," SIAM J. on Computing,
Vol. 5, 1976, pp. 618-623.

Dahlquist, G., and A. Bjdrk, Numerical Methods (trans. N. Anderson),
Englewood Cliffs, New Jersey, Prentice-Hall, 1974.

Franklin, J. N., Matrix Theory, Englewood Cliffs, New Jersey, Prentice-Hall,
1968.

Gentleman, W. Morven, "Some Complexity Results for Matrix Computations on
Parallel Processors," Journal of the Association for Computing Machinery,
Vol. 25, No. 1, January 1978, pp. 112-115.

Isaacson, E., and H. B. Keller, Analysis of Numerical Methods, New York,
John Wiley and Sons, Inc., 1966.

Kung, H. T. and C. E. Leiserson, Algorithms for VLSI Processor Arrays,
Department of Computer Sciences, Carnegie-Mellon University, 19/8.

Liles, W. C., and J. Demmel, "Solving Large Positive Definite Hermitian Linear
Systems Utilizing Parallel/Pipeline Processors," Proceedings of the 1978
International Conference on Parallel Processing, IEEE, 1q78, pp. 261-262.

129

REFERENCES (Cont'd)

Liles, W. C., J. W. Demmel, J. D. Mallett, I. S. Reed, and L. E. Brennan,
Multidomain Algorithm Evaluation, 2 volumes, TSC-PD-B525-1, Final Report
on RADC Contract F30603-76-C-0319, Technology Service Corporation, Santa
Monia, California, January 1978, RADC-TR-78-59, Vol I A054357, Vol IIA0543 58

Rao, C. R., Linear Statistical Inference and its Applications, New York,
John Wiley and Sons, Inc., 1965.

Reed, I. S., J. D. Mallett, and L. E. Brennan, "Rapid Convergence Rate in
Adaptive Arrays," IEEE Trans. on Aerospace and Electronic Systems, Vol.
AES-IO, No. 6, November 1974, pp. 853-863.

Rice, J. R., "Experiments on Gram-Schmidt Orthononalization," Math. Comput.,
20 April 1966, pp. 325-328.

Sameh, A. H., "Numerical Parallel Algorithms--A Survey," High Speed Computer
and Algorithm Organization, Academic Press, 1977a, pp. 207-228.

Sameh, A. H., and D. J. Kuck, Linear Systems Solvers for Parallel Computers,
Department of Computer Sciences, Report NO. UIUCDCS-R-75-701, University
of Illinois at Urbana-Champaign, February 1975.

, "Parallel Direct Linear Systems Solvers - A Survey," Parallel
Computers - Parallel Mathematics, North Holland, 1977b, pp. 25-30.

- -- , 'On Stable Parallel Linear System Solvers," Journal of the
Association for Computing Machinery, Vol. 25, No. 1, January 1978,
pp. 81-91.

130

Appendix A

PERFORMANCE OF THE SAMPLE OVARIANCE MATRIX
ALGORITHM FOR ADAPTIVE ARRAYS

A.1 INTRODUCTION

When an adaptive array is implemented digitally, the sample covariance

matrix algorithm provides a direct method of computing the adaptive weights

and rapid convergence independent of the eigenvalues of the covariance

matrix. Previous analyses of this algorithmE l] have assumed that the

weights are computed using one set of array element outputs and these

weights are applied to later array outputs. This report considers the

case where the adaptive weights are tested against the same set of data

used in the weight computation.

For many applications, the multiple channel sidelobe canceller is

the preferred adaptive configuration. It can be shown that the sidelobe

[2]canceller is a special case of the more general adaptive array. In

the next section it is shown that the general adaptive array problem can be

transformed to an equivalent sidelobe canceller problem, a form which is

more convenient for some analyses. It is also shown that the array per-

formance is independent of this transformation, and that the effective

weights, output S/N, etc., can be computed in any convenient coordinate

system provided the transformation of coordinates is non-singular.

TT-1. S. Reed, J. D. Mallett, and L. E. Brennan, "Rapid Convergence
Rate in Adaptive Arrays," IEEE Trans. on Aerospace and Electronic Systems.
Vol. AES-lO, No. 6, November 1974, pp. 853-863.

[2] S. P. Applebaum, "Adaptive Arrays," IEEE Trans. on Antennas and
Propagation, Vol. AP-24, No. 5, September 1976, pp.585-598.

131

"-... Ii r ' - --, I

A.L COORDINATE TRANSFORMATIONS

Let X denote the column vector of array element outputs,

XT (Xl,X 2 , ..,x,,), and Sx denote the corresponding signal vector. The

noise covariance matrix of the array outputs is

Mx = E X X t, (A-1)

where Mx is a NxN Hermitian matrix for an N element array, E denotes the

expectation, t the complex transpose, and all noise components Cbut no

signal) are included in Mx.

The weights which maximize the S/N ratio are

Wx = MxI Sx (A-2)

and the corresponding array output is

Z=W X= S X (A-3)

With optimum weights, the output S/N ratio is

(Wt Sx) 2 t

SSx Mx Sx (A-4)
W x M x W x

Let T denote any non-singular transformation, and

Y =T X (A-5)

132

In the new coordinate system,

M= E Y Yt T Mx Tt (A-6)

Sy T Sx
(A-7)

Wy M y I S (A-8)

Combining Eqs. (A-5) through (A-8),

Wy = (Tt)- W x (A-9)

and

7 = Wt Y = (A-10)- y =xX

i.e., the output of the array is unchanged by the transformation.

The sample covariance matrix in X coordinates is

k
Mx: l Xk k 1 XI (A-f1)

xk k
k thl

where Xk denotes the kt h independent sample of array element outputs and K

is the number of samples in the estimator of Mx. The weights based on a

sample covariance matrix are

x = l S (A-12)
x

Replacing Mx and My with the corresponding esimators, M. and My, and fol-

, |lowing the analysis of the preceding paragraph, it can easily be shown

133

the array output with weights based on a sample covariance matrix is also

independent of the transformation T. Hence, the analysis of adaptive array

performance, including the sample covariance matrix algorithm, can be per-

formed in any convenient coordinate system provided the required trans-

formation is non-singular.

A.3 PROBABILITY DISTRIBUTION OF S/N

For any arbitrary adaptive array, the input vector X can be trans-

formed to a new set of coordinates in which the signal is present in only

one component and the noise covariance matrix is diagonal. First, let

V = M-I/2 X to diagonalize the noise covariance matrix. Then,

Mv = E M 1 /2 X x I M ' = I

(A-13)

S v =
M -1 /2x S

x

Next, rotate the coordinates by a unitary transformation U so that the S

vector is non-zero only in the first component, and normalize its amplitude

to unity
S - 1)-/2

Y=(x 5) UV
Y (x Mx xO 1

(A-14)

= r 'I 2 U M- /2 X
1 x

134

where r0 is the S/N ratio with optimum weights, given by (A-4). Then,

My = r-lI U M- / 2 M M' 2 = l _I (A-)
y x xr

and

S r-/2 12 S(=)
S ro 2 U m (A-16)y 0 x x (

Note that the output S/N ratio in the new coordinate system is

St m- ISy = (Myl1l (A-17)

y y yl

i.e., the (l,l) element of the matrix MyI

y
The sample covariance matrix algorithm can be analyzed conveniently

in the new coordinate system. The subscript y will be dropped in the

following equations. Again, the sample covariance matrix is

K
(AiA

K k=l 1

The weights based on this estimator are

S (A-19)

135

.i

When these weights are tested on a different set of samples than those

used in estimating W, the S/N ratio rI is

f 2
r 1W SI (A-20)

I W tMW

The ratio of r to the S/N with optimum weights is

_ rI (S, A S)A

Pl r o (St M-1 S)(ST M M) (A-21)

The probability density of this variable Pl was derived in [1].

In some cases of interest, the weights may be applied to the same

set of samples used in computing W. In this case, the output S/N ratio is

r = S M-l S : (M-) (A-22)

The analysis of [1] can be extended to obtain an expression for the pro-

bability density of r.

[1,3]
The sample covariance matrix has a complex Wishart distribution

i.e.,

P(A) K exp {-tr(M-I A)} (A-23)

P3 7N. R. Goodman, "Statistical Analysis Based on a Certain Multi-
variate Complex, Gaussian Distribution," Ann. Math. Stat., Vol. 34,
March 1963, pp. 152-177.

136

kL

where JAI denotes the determinant of A, N is the number of elements in the

array, tr denotes the trace of the matrix, and A = K M. The constant I(M)

is a function of K, N, and the covariance matrix M. In Eq. (A-23), P(A)

is the joint probability density of the elements of A, and is restricted

to those matrices A which are positive definite. It assumes that the

underlying noise process is complex Gaussian.

Consider the following representation of the matrix A.

(A 1 1 A1 2

A = 9 (A-24)
\A21 A22 /

where A11 is a scalar, A21 is a (N-1)xl column vector equal to A12, and

A2 2 is a (N-l)x(N-l) moatrix. As in [1], A can be factored as follows

I A A11 -
(A21'\ -A12 22 A21,0

A , (A-25)

0 A A-1 A
A2 2) 22 21

and
A= iAl-A 2 A2k A2 1 I 1A221 (A-26)

137

Let

D A AA-1 At
I= A 1-A 2 22 12

D12 = A1 2 =A~l (A-27)

D22 = A22

The Jacobian of the transformation from (AlI, A12, A22) to (Dll, 012, 022)

is one, so

P(D D D K-N ID2 21 K-N 1 exp _(D1 1 +Dl2 1 Dt2 + tr D22)ro}

= P(DI) P(D12,D22) , (A-28)

where

P(Dll) = C1 DKIN exp{-r ODl l} (A-29)

and C1 is a constant.

Representing A-1 in the same form as Eq. (A-24),

= (A 1 A12 (A-30)

\A2
1 A22 /

it can easily be shown that AI1 D 1 Since A = K M and, from Eq. (A-22)

138

the output S/N ratio is

r'= (M-) = K All D K (A-31)

Let p r/r° ro k D1 From Eq. (A-29)

= C2 K
K-N+l

K-N+2 exp,- (A-32)"

K-N+2 e P

I1

Normalizing this distribution, C2 = K- , and

P(P) K-N+l exp (A-33)
(K-N) ! pK-N+2 P

This is the probability density function for the normalized output S/N

ratio, p = r/r0 , when the same samples are used in M for computing the

weights and for testing the weights.

From Eq. (A-33),

_KK-N (A-34)

The mean output S/N ratio for the same samples is greater than with

* optimum weights, W =M - S. That is, p > 1.

139

Appendix B

DERIVATION OF NOISE SENSITIVITY RESULTS

This appendix derives the results used in Section 3.2 We know [Brennan

and Reed 1973] that the SNR of an adaptive system with true covariance matrix

M. steering signal S, and weights W is

SNRW S*W2 * MW .(B-1)

When W W WOPT = M-S, we get

* = S*(W 15S) = S*(M*l'M)W-ls = (M-ls)*M(M15s) =W*MW

so

SNROPT = IS*WI 12/W*MW = S*W =W*MW =S*M15

When W =W OPT + E, where E is an error vector, we get

SW = IS*(WOPT + ~ 2 (WOPT +)*M(WOPT +E

=[S*WPT12 + 2Re (S*WOPT)(SE) + IS*E 12]

(W OPT*MWOPT + 2ReWOPT*ME + E*ME)

0= i(SNRg 2 + 2SNRQPRe(S*E) + IS*E12)/(SNROP + 2ReS*E + E*ME)

= SHR OPT + (IS*E, 2 - SNROPTE*ME)/W*MW

140

=-[- (E*ME/W*MW)] SNROPT + (E*ME/W*MW)(IS*E1/E*ME)

=-[- (E*ME/W*MW)]SNROP + (E*ME/W*MW)SNRE

= SNROPT + (E*S*SE - SNRQOPTE*ME)/W*MW

=SROPT E*M-(S/SNROPT)]E * (SNRQPT/W*MW) (B-2)

Since M is positive definite Hermitian, S*S is positive semidefinite Hermitian

of rank 1, and

x*[M - (S*S/SNR OPT)]x = x*Mx/SNROPT ' [SNROPT -(x*S*Sx/x*Mx)]

= (x*Mx/SNROPT)(SNROPT -SNRx) > 0

we have M - (S*S/SNR OPT) is positive semidefinite Hermiitian of rank n-i

(W =M-1S is in the null space) and

0< X[M - (S*S/SNR pT)]X (M)-X. S*S =X (M)

Also

W*MW =(WNOPT + E)*M(WQPT + E) = W OPT *MW OPT +- 2ReWOPT*ME + E *ME

> SNROPT -211S5l1 lIEuJ + X min *JE 2

so

SNROPT/W*MW 1l + (211511 IIEII/SNROPT) + O(11E11 2) 1 + O(IIEH1).

141

When W=W + E, W not necessarily optimal, we get

SR = [JS*Wj2 + 2Re(S*W)(S*IE + IS*E1 2]/(W*MW + 2ReW*ME + E*ME)

= (assuming I2ReW*ME - E*MEI < 1 for small E)

- IS*wI 2 + 2Re(W*SS*E) + IS*Ej 2] .(l/W*MW)

*[I - (2ReW*ME/W*MW) - (E*ME/W*MW) + 4Re 2(W*ME)/(W*MW) 2 + O(IIEII 3]

= IS*W1 2/W*MW + (iS*WI 2 /W*MW) * (-2ReW*ME/W*MW) + 2ReW*SS*E/W*MW

+ (IS*Wi2/W*MW) (-E*ME/W*MW) + (S*W)2/W*MW. 4Re 2W*ME/(W*MW) 2]

-[4Re(W*SS*E)Re(W*ME)/(W*MW)
2] + IS*E 12/W*MW + 0(IIEII 13

=SNR W + SNR W(-2/W*MW) * Re[W*(M - SS*/SNR W)E]

+ (SNRW/W*Mw) - i(E*SS*E)(1/SNR W) E*ME

+ 4ReW*ME/(W*MW) (ReW*ME - Re(W*SS*E)/SNR W] + 0(1 El 13)

= SNR W - 2(SNRW/W*MW) * Rej[(M - SS*/SNRW)W]*E)

+ SNRW/W*MW Rel[4(keW*ME/W*MW)W* -E*](M - SS*/SNR W)E}

+ 0(11E1 3) (B-3)

Now we turn to the problem of inverting M = M + A, where M is a covariance

matrix and A kk f p if k=Z=j, 0 otherwise}. We may write

142

A-1 = (M + A) 1 : M-1 M(M + A)- M-I [(M + A)M-

= M-l(I + AM- 1)-I (B-4)

Since AM-1 is all zeroes except for row j, which is the jth row of M
-l

multiplied by p, we can write

M- MI + P m . . . mj }jth ro (B-5)
L 0

where M = {m ij} and M -1
- m'J}. The inverse of the expression in parentheses

is given simply by

-1
(i m1. . .. mjnl = IF •mjl mj ni6

0 0Im 0 M I I -1 + Pm33 0 m B6

so that M-l is

1+ MI (1+mjj)[m i 0 . in
0

This formula is a special case of the Sherman-Morrison formula [Dahlquist and

Bjbrck 1974, p. 161].*

The new weights W = M-S are given by

0
W = W + M'(l -ii [w}row j (B-8)

G. Dahlquist and A. Bj6rk, Numerical Methods (trans. N. Anderson),
Englewood Cliffs, New Jersey, Prentice Hall, 1974.

143

where W : {wj} = M-S are the original weights. Thus the new weights equal

the old weights plus the j column of M- times [-p/(1 + pmjj)]. We can
express S*M-IS, the optimal SNR of the system with noise, in erns of the old

optimal SNR = S*M~1S, using Eq. (B-8):

SNRNEwOPT S-S = S*W = S*W + S*M-I • [-pAl + pm J){

= SNROLDOPT + W* Wj 1-p/(+ pmJJ)]

-0

= SNROLDOPT - [pIwIl + PmJJ)] (B-9)

If the covariance matrix is still M, but weights W = M-1S are used, we may

compute the new SNR using E = W - W and Eq. (B-2). We need to know

E'ME = -l(-p.\ M -I(P

IM + pmj) M I+ pmwjj

0 I0

0 0

and

144

S*E W*ME W* j~ 7 -JJ w.j (-lLom .1 + Pm3

and

W*MW = SNRQP + 2ReW5PTME + E*ME

= SNRop + 2pjw.j 2 /0 + pm3'3) + .2Wii2i (B-12)
OPT (1 +mj

Then the SNR W is

SNRw = SNROP SNR OPT
W OPT ~SNROPT - 2piw ii2 /(1 + pmjj') + 2 Iw I2m3'3(1 + Pj

[p 2Iwj 2 mj/(l +pm jj) 2 jw2 j 1 4/(1 + pm33) 2/SNR OPT]

= SNR P ~2 Iw.I 2 mi/(l + mj2

.
IS ONPTP -

2

= SN OPT PT - pw.I j /[S P(l + pm)2 _ p. 1w,(1 + pm)

SOPT i3 J

By differentiating Eq. (B-13) with respect to p, we can show SNRW is a monotonic

decreasing function of p, and that lrn SNR W =SNROPT - wi 2/mi, the same

lower bound as for Eq. (B-9).

145

Appendix C

EXAMPLE OF USING GRAM-SCHMIDT TO SOLVE A SYSTEM

OF SIMULTANEOUS EQUATIONS

Assume the matrix equation

Ax=b

where A is real positive definite Hermitian and

2 4 61

A = [4 12 20

6 20 36

x = unknown = x2

x 3

4]

b= 16

30

The network used is shown below.

11 12

22

1 146

Here, 1 12

1

0 0 12 W1l

We will solve for x by decomposing A into the form LDLT. This decomposition

is performed by passing each row of the matrix through the network, using the

following steps:

Step 1. Pass row 1 of the matrix through the array to calculate the
first row of weights.

2 4 6 Row 1

2

w1l a1 2/a,, = 4/2 = 2

w12
= a13/a,, = 6/2 = 2

dll = a,, = 2

Step 2. Pass row 2 of matrix through the array to calculate second row
of weights.

4 12 20

2- 3 20 - 3(4) 8

t2 4 12 8

12 - 2(4) = 2

d22= 4

147

Step 3. Pass row 3 of the matrix through the array to calculate d3 3.

6 20 36

2 3

- 36 - 3(6) : 18
20 - 2(6) = 8

22

18 - 2(8) :2

d3 3 = 2

We now know that the L and D matrices are as follows:

L 2 1 0 D- 0 4 0

L3 2 1 L0 0 2

To solve the system of equations, we have to perform the following steps as

well, because LDLTx b -x = T-I[D'I(C-Ib):

Step 4. y = L-b

Step 5. z = D1 y

Step 6. x = LT-1z

q 14

148

Step 4. Pass b through the array to perform L-Ib

4 16 30

y

Yl = 4
2 3

16 - 2(4) 8
0y 2 = 8

I -

18 -2(8) = 2 Y3 = 2

Step 5. z D-l y; and since 0) is diagonal, it is easy to invert.

112 0 0 4z2y

D- 0 1/4 0 y 28 z]D-ly 2

2 0 /2 21

Step 6. x = LT-1z, which will be done by the reverse flow method.
We pass z through the network in opposite direction from normal.

-1 0 1

2

2 -3(l-
-1 2 2 0

22

- 2 -2 (l) 0 L

The vector x has now been determined.

149

We now present a solution to the problem being solved which differs from

the previous solution because it eliminates steps 4 and 5 by using an augmented

from of the matrix (to be explained below).

Solve Ax = b
2 4 61

A= 4 12 20

6 20 36rXl
X = X2.

X 3

b 16

30

2 4 6 4

A augmented 4 12 20 16

6 20 36 30

A augmented is simply the A matrix with b added as the last column. The

network also has an added column as shown below.

4w 11 W 12
Wil

W22 1W23

w3 3

4 i The steps of the aqgmented form of solution are as follows:

150

Step 1. Pass row 1 of matrix through array to calculate first row of weights.

2 4 6 4 a

WII-
al..

- = 2

a a - -

W2 2 a13 2

W13 a 1 2

Step 2. Pass row 2 of matrix throuqh array to calculate second row of weights.

4 12 20 16

42 3 ~ ? 2

12-2(4)

2044

__

674

Step 3. Pass row 3 of matrix through array to calculate third row of weights.

6 20 36 30

202(3-
3-

16

.I

-
I P-21 V ?

18-2 8):

33 1

151

S . - -

Note that

Wl13 =2

W 2
23

W = 1

These values are the same as z in step 5 of the previous solution. We can

proceed with the reverse flow or unit vector method to determine x.

Step 4. We now show one step of the unit vector method as discussed in

Section 2.6.1. The unit vector method passes a unit vector through the array

and performs the dot product of the array output with the vector z to determine

an element of x.

A column of the array performs a calculation very similar to dot

product and can be used in thai manner, as shown below:

11 01 11 - W112

12 w 0 02 = 01 - W213

13
.w 2 -- -0 3 = 02 - W3140

2

1 w3 03 = 11 - W11 2 - W213 - W314

= Il I l- WiIi+l

By setting I=0, the column output is the negative of the dot product

of the column weights and the input vector. We now perform the unit vector

method to calculate xI.

152

i

.3 "'-'--0- a! ,-Z

S-,-2 -2'

The array output is 1; therefore, x =-l because the last column

output is the negative of the dot product. xI=-I is the same answer obtained

in the previous solution.

Multiple b's (Multiple Steering Vectors)

This modification .consists of addinq enough extra columns to handle

the additional b vectors. The illustration shows the configuration for 4b

vectors, and a matrix of order 3,

Ma trixK I "iuf b k'". tor It I

153

--

Let N be the matrix dimension. Then N additional processors are

needed for each b vector. For Kb vectors, K*N additional processors are

needed.

To determine x for Ax=b, either reverse flow or unit vector methods

can be used. If the unit vector method is used, the total time is independent

of the number of b vectors. The total time would be derived as follows:

N = dimension of matrix

t = time per array stage

There are N unit vectors and N staaes; thus, total time is

TUV : Nt + (N-l)t = (2N-l)t

For the reverse flow method, the time is a function of the number

of b vectors (K). Using the same definitions as above, the total time

TRF = (N-l)t + (K-l)t

= (N+K-2)t

The reverse flow method is faster for K<N+l but also requires more

complicated processors.

154

ir ' ' ' ' '- - - ,

Appendix D

RECIPROCAL AND SQUARE-ROOT CALCULATION

Depending on which Gram-Schmidt method is used (LDL* or LL*), either the

reciprocal or the reciprocal of the square root or a real number must be

calculated at each level. These calculations are performed using Newton-

Raphson iteration. Newton-Raphson has the advantage of quadratic conversion

(the number of accurate bits doubles with each iteration step) and the

processing can be performed without divisions. The general recursive rela-

tionship is xi+ l = xi - F(xi)/F'(xi). For reciprocal of A the function

F(x) = (I/x - A). Applying the reciprocal function to the general function

we have the following:

xi+l = xi -

1
xi - A

x =xl - ___2
Xi+l = i -2

-xi

x + x Ax

= (2-Axi)x i

The seed value for x0 is determined by table lookup and is an

approximation of 1/A. Each iteration step doubles the accurate bits.

The square root operation is performed almost identically. The

function F = (1/x2 - A), so the recursive formula becomes

X 3 x2 A)xi/2

i+l 5 i

155

The divide by 2 is easy to implement, using a shift operation. The

reciprocal of the square-root operation is slower than the reciprocal operation

due to an extra multiplication and shift.

156

Appendix E

TIMING EQUATIONS FOR BLOCK AVERAGE

AND O(n) PROCESSORS

The processor computation abilities are those listed in Section 3.4.

The O(n) processors are connected and perform the processing as shown in

Figure E-l. The reason for the processor on the first input is to compute

the first denominator and its reciprocal.

The timing equations developed in Section 2.6 for an O(n 2) array apply

to the O(n) array when one equation is to be solved. When more equations are

to be solved (in a pipeline by the O(n 2) array) the differences in time

between the O(n) and O(n2) processor implementations become apparent. The

three stages of calculation using the O(n) array are:

1. Calculate all internal weights.

2. Pass S through the array.

3. Solve for the weight W.

We build up the timing equation in the above order for three implementations:

Sequential

Full pipeline

Optimal

E.l CALCULATE ALL INTERNAL WEIGHTS

For each implementation method, we have the following steps:

A. Compute numerator and denominator.

B. Compute reciprocal.

C. Multiply by reciprocal.

D. Pass data through array, applying internal weights.

The timings for these basic steps are:

157

Ikl

a. Processor configuration.

I .

b. Processing configuration.

Figure E-1. Model used for O(n) timing measurements.

158

4%4

A B C D

Sequential 10 St 7t 2t 11 St
Full pipeline lOt+(S-l)t 7t 2t llt+(S-l)t
Optimal 4t+(S-l)t 7t 2t 5t+(S-l)t

We must calculate internal weights at N-1 levels; so the general

timing equation is

T = (N-I)A + (N-I)B + (N-I)C + (N-2)D

The specific timing equations are:

Arbitrary N,S S = 2N

Sequential (21NS+9N-32S-9)t (42N2-55N-9)t

Full Pipeline (25N+28N-3S-38)t (4N2+22N-38)t

Optimal (2SN+16N-3S-20)t (4N 2+lON-20)t

The only difference between the times for O(n) processors and O(n2

processors is that with O(n 2) processors, there is overlap between applying

the internal weights calculating the numerator. This overlap can be obtained

with O(n) processors if the processing power of each processor is doubled.

Another approach is to use twice the number of processors as shown in

Figure E-2. This is still an 0(n) processor configuration and the processors

can be identical.

E.2 PASS S THROUGH THE ARRAY

With only 0(n) processors, no pipelining can be performed. By design-

ing the processors with recirculating pipelines, we can handle L steering

vectors at a time,where L is the length of the pipeline. For K steering

vectors, FK/Li passes are required. Another method is to pass all K vectors

159

WEIGHT

CALCULATE
NUMERATOR

NEW INTERNAL WEIGHTS
ROUTED BACK TO FIRST ROW

Figure E-2. O(n) processor configuration with same speed to
calculate internal weights as O(n2) processors
using block averaging.

16

~160

through sequentially. In this case, a memory (first-in, first-out (FIFO)

buffer) of length K-L is needed for recirculating (Figure E-3). If K-L > L,

then additional processing may be disired on the feedback path instead of

simply a FIFO-buffer; this is the model we will use. This model applies only to

full pipeline and optimal implementations. The sequential implementation

does not offer any pipeline possibilities. The timing formulas are:

Arbitrary N,K K = 1
Sequential (N-l)IlKt ll(N-l)t

Full Pipeline (N-l)max(K,ll)t + (K-l)t ll(N-l)t

Optimal (N-l)max(K,5)t + (K-l)t 5(N-l)t

The maximum function is due to the recirculating buffer. If K is less

than the length of the pipeline, then we use the pipeline length, or else we

must include the recirculating path.

E.3 SOLVE FOR WEIGHTS

We solve for both unit vector and reverse flow methods.

Unit Vector Timings

For the unit vector method, we must pass through K+NK vectors. We can

use the timing formulas just developed for passing K steering vectors by

substituting K+NK for K. These formulas are:

Arbitrary N, K+NK N > 10

Sequential (N2-1)llKt (NJ-)lIKt

Full Pipeline (N-l)max(K+NK,ll)t + (K+NK-I)t (N2K+NK-l)t

Optimal (N-l)max(K+NK,5)t + (K+NK-lt (N 2K+NK-l)t

Since we are interested in large cases, the overall timing formulas

now given are with N > 0: so a recirculating pipeline is used.

161

NO& A -.

~FEEDBACK

FORWARD

For K Input Vectors

L Forward Pipeline Length

Require
K-L Feedback Stages

Effective Pipeline Length

Max(K,L)

Figure E-3. Recirculating pipelines.

I1
6

162

Timing Formulas for Complete Process

Arbitrary S,K; N > 10 N > 10, S=2N,K=l

Sequential (21SN+llN 2K+9N-11K-32S-9)t (53N2-55N-20)t

Full Pipeline (2SN+N 2K+NK+28N-3S-39)t (5N2+23N-39)t

Optimal (2SN+N 2K+NK+16N-3S-21)t (8N2+llN-21)t

For the special case (N > 10, S=2N,K=I) the above are approximately

two times slower than the O(n 2) implementations. As K increases, this

difference becomes larger due to this N2K term in the above formulas.

Reverse Flow Timings

The reverse flow timings, in general, are not simply twice the forward

flow for K steering vectors as is the case with O(n 2) processors. The excep-

tion is when diagonal collapsing is used because then the array is symmetric

from both the input and output ports. The reverse flow timing for horizontal

comparison is the same as forward flow from K steering vectors for vertical

comparison. For vertical comparison just interchange horizontal and vertical

in the above sentence. This is summarized in Table E-l. We will only derive

the timing for vertical collapsing.

TABLE E-l. TIMINGS FOR THREE O(n) IMPLEMENTATIONS

Pass K Steering Reverse Flow
Implementation Vectors Through Array K Steering Vectors

Vertical
Col lapsing

Horizontal
Collapsing

Diagonal
Collapsing

NOTE: Times at end of double header arrows are the same.

163

II

The last processor must operate on (N-i) streams before the other

processors can compute their tasks. After the last finished there are (N-2)

processors waiting for the output,which must be processed in order. A

question which arises is whether to process one steering vector at a time

or the ith element from all steering vectors before the i-lst element. Both

of these methods have the same throughput rate.

The timing equations for reverse flow only are:

Arbitrary N,K

Sequential (KN-K+N-2)llt

Full Pipeline (KN-K+llN-12)t

Optimal (KN-K+5N-6)t

The computer timing equations for all three steps are:

Arbitrary N,K,S S=2N,K=I

Sequential (21SN+22NK+20N-22K-32S-31)t (42N2-22N-53)t

Full Pipeline [25N+NK+39N-3S-51+(N-l)max(K,ll)Jt (4N 2+45N-62)t

Optimal [25N+NK+21N-3S-27+(N-l)max(K,5)]t (4N2+21N-32)t

Because of the symmetries between horizontal and vertical collapsing,

the above formulas apply to both.

Comparison of Unit Vector and Reverse Flow Times

The reverse flow method is faster if the following conditions hold:

N > 10

Sequential All cases

Full Pipeline N2K+12>llN + (N-l)max(K,ll)

Optimal All cases

164

If we add the restriction that N must be greater than 22, reverse

flow is always superior. This restriction is not unreasonable, since our

effort is directed at large adaptive arrays.

Special Case

As already mentioned an 0(n) system can determine the internal weights

as quickly as an O(n 2) system if the processors are twice as powerful or

doubled up. The process of applying the transformation to the steering

vector and then using the unit vector or reverse flow method can also be

performed on an O(n) system at the same rate as on an 0(n 2) system with the

same processor speeds. The method depends upon the diagonal collapsing

(Figure E-4). In this processor, organization of each row has independent

processors as does each column. Therefore, if only one input vector exists

(one steering vector, K=l) then at each stage no waiting is encountered for

busy processors. The following table specifies the conditions in which

this method is equal in time to an O(n2) array.

Unit Vector Reverse Flow

Sequential Never K=l

Full Pipeline K+NK < 11 K < 11

Optimal K+NK < 5 K < 5

The above table shows that the unit vector method is never equal to

O(N 2) array times for N of interest (N > 10). The reverse flow method

rating is independent of N, which is desirable. We also know that with

diagonal collapsing, the reverse flow method can be used with forward flow.

165

' Kala

Figure E-4. Diagonal collapsing.

166

.

Appendix F

PROCESSING TIMING FOR BLOCK AVERAGE O(n2) SYSTEM

This appendix determines system throughputs as a function of the

degrees of freedom, N, the number of samples, S, and the number of steering

vectors, K. This process can be divided into three subfunctions:

1. Calculate all internal weights.

2. Pass S through array.

3. Solve for weights, using unit vector or reverse flow method.

We build up the timing equation in the above order for three implementations:

Sequential (worst case)

Full pipeline

Optimal (best case)

We also assume separate processors for denominator calculations.

F.l CALCULATE ALL INTERNAL WEIGHTS

For each implementation method we have the following steps:

A. Compute numerator and denominator.

B. Compute reciprocal.

C. Multiply by reciprocal.

D. Pass data through, applying internal weight.

The last step can be combined with the first step, so that as the internal

weights are applied the outputs are used to calculate the numerator and

*denominator of the next row. The timings for these basic steps are:

167

A B C D

Sequential lost 7t 2t liSt

Full pipeline lOt + (S-l)t 7t 2t lit + (S-l)t

Optimal 4t + (S-I)t 7t 2t 5t + (S-l)t

For a system of degree N there are N-i internal weights; so the general

timing formula in terms of stages is:

T = A + (N-l)B + (N-I)C + (N-2)[DA]

where [DA] represents the time to apply the weights and calculate the numerator

in the pipeline. The resultant specific formulas are:

Arbitrary S & N 5 = 2N

Sequential lSN + 20N -12S - 9 22N2 - 4N -9

Full pipeline SN +30N -S - 20 2N2 + 28N -20

Optimal SN + 17N - S-13 2N2 + 15N -13

F.2 PASS S THROUGH ARRAY

This is the same calculation as applying the internal weights to K input

vectors (remember K is the number of steering vectors). The time formulas are

as follows:

Arbitrary N,K K=l

Sequential (lIN + 11K - 22)t (1iN - ll)t

Full pipeline (11N + K - 12)t (11N - llt

Optimal (5N + K- 6)t (5N - 5)t

168

After passing the steering vectors through the array, the resultant

vector must be multiplied by all the reciprocals of the denominators. Since

these values have already been calculated, only a real-times-complex multiply

must be performed, as follows:

Sequential Full pipeline Optimal

Multiply Multiply Multiply

Multiply Multiply

Time 2t 2t t

Total
Time (lIN + 11K - 20)t (11N + K - lO)t (5N + K-5)t

F.3 SOLVE FOR WEIGHTS

We first explore the unit vector (UV) method. This method, as explained

in Section 2.6.1, consists of passing N (or N-l) unit vectors through the

arrays and performing a dot product on the output. This process is similar to

passing S data vectors through the arrays, so the same formula holds. Since

the steering vector (or vectors) will pass through the arrays first, we are

passing a total of K+NK vectors (N unit vectors for each steering vector).

The processing time for dot product is entirely overlapped by the pipeline

nature of the array except for one complex multiply and add at the end. The

delay for this last multiply/add is equivalent to applying the weight for

one input (llt, llt, and 5t for the three methods discussed).

169

IkI

Unit Vector Times

Sequential liNK + 22N + IlK - 22

Full pipeline NK + fiN + K - 12

Optimal KN + 5N + K -6

Time for the entire processing time can now be determined by adding

these times to the times for passing through the raw data vectors. The

resultant timing formulas are:

Arbitrary N, S, K K=l, S=2N
Sequential 11SN + lINK + 33N.- 12S + IlK - 23 22N 2 + 20N - 12

2
Full pipeline SN + NK + 41N - S + K - 31 2N2 + 40N - 30

Optimal SN + KN + 22N - S + K - 19 2N2 + 21N - 18

Reverse Flow Times

The reverse flow method is exactly the opposite of passing the

steering vectors through the array, so the basic timing formula is:

PASS RAW DATA + 2 * PASS STEERING VECTOR + COMPLEX MULTIPLY

The extra complex multiply is'to perform the final calculation of passing

the steering vectors. The timing formulas are:

Arbitrary N, S, K K=l, S=2N

Sequential IISN + 44N - 12S + 22K - 51 22N2 + 20N - 29

Full pipeline SN + 52N - S + 2K - 42 2N2 + 50N - 40

Optimal SN + 27N - S + 2K - 24 2N2 + 25N -22

170

Comparison of Reverse Flow and Unit Vector Times

We can compare the timing equations for reverse flow and unit vector

methods to determine which is faster. The results of this comparison are

shown below:

Reverse Flow Faster If

Sequential All cases

Full pipeline NK + 11 > 11N + K

Optimal NK + 6 > 5N + K

As K approaches N the reverse flow method is better. Which method is actually

implemented is determined not only by K and N but also by the timing requirements

of the system to determine the required level of complexity in the processors.

171

Appendix G

PROOF OF RESULTS ON GROWTH OF INTERMEDIATE RESULTS

We first consider the case of the algorithm without square roots, where

the actual elements of the covariance matrix are passed through the array.

Since the array does nothing more than the Cholesky LDL* decomposition of M,

we will first change notation to show how the Zi(k) correspond to intermediate3

values in the Cholesky decomposition, and then with this simpler notation

prove the stated results.

Our claim is that

Zi(k) = m 9 kkdr i<k (G-la)
r=l

k mkk F i kkrd dk -br= 1
i-l

Z'(k) =mk - z kr9jrdr i<k (G-Ic)3 k l

wkj = zk (k)/Z (k)= j>k (G-Id)

where L = {Zjk}(unit lower triangular), D = diag {d }, M {mjk}, and M=LDL*.

The proof is by noting that the array and the Cholesky decomposition perform

the same column operations on M, and that the array recomputes some intermed-

iate values (because no time is lost due to parallelism,and interprocessor

communication is simplified).

We may now show

S k Z(k) =- m rl zkzk d r < (G-2a)min k kk r max
r=lkrk -ma(G2)

i-I
m Z(k) = mkk dr (i<k)

Zin krkr < k) (G-2b)

i'4
where Xmin minimum eigenvalue of M and mmax j max fi.

ij

172

We need several well-known facts. max = max miiI since our matrix is

positive definite Hermitian [Isaacson and Keller 1966]. The separation

theorem [Franklin 1968]* states that if M is an nxn positive definite Hermitian

matrix, and if Mm is the mxm matrix consisting of the first m rows and n
m m

columns of M with eigenvalues X < < .m <Xm, then the X* satisfy

Am < m'l <m< ... < m-1 <Am" In other words, the m-l eigenvalues lie1-I - 2 - - m-1l-m

in between, or separate the m eigenvalues of the larger matrix. Also, if
m m

M=LDL*, D=diag(d then det Mm j m d., the equality of which

follows from the fact that det M = det D =17dj and the Cholesky decomposition

of Mm produces the same kij and di values for i <m. Finally, to prove

Eq. (G-2a), we write

m M/ m- m A I mdm _d _/m7 dj : det Mm/det Mm : -/ "- = J

so since

Xm-l < Xm
j - j+l

m mm-ld ->/7 Xj nI X = m1 > n1 = Xmi

m j=l j j- 1 1 I +min

The other half of the inequality follows by our noticing that the defining

equation for dk (Eq. (G-lb))starts with mkk < mmax and subtracts positive

numbers itkr2 dr (dr > Xmin > 0 since M is positive definite). Eq. (G-2b)

follows from (G-2a) since Xmin < Zk (< Z(k) <m < x and the sum for
k - kk max

Z (k) subtracts more positive terms than the sum for Zl(k). That these

bounds are sharp is obvious by considering any diagonal batrix.

J. N. Franklin, Matrix Theory, Englewood Cliffs, New Jersey,
Prentice-Hall, 1968.

173

Next, we show

jZk(k)j < m (G-2c)- mmax

IZ'(k)l < 2m (i<k) (G-2d)
, J - max

'- kk -

Let kkr k kr Yr so that dk k jk Z.(k) = m. - Q r (k<j) so
r=l

kkk Since mkk 2 and
- r=l

2 kkJ~ ~ k
m rJIkjrl wehv2 ~ - and Z < A~ so IZ (k)l < mr= rax'm =we have kk < max Zjk max -Zmax'

k-l th
proving Eq. (G-2c). Also IZ.(k)l : k jr= Imk (k row

3 .k r~ kr jr mjk -(

of L up to i-1, jth row of L up to i-l)I < ImjkI + l(kth row of L up to

i-1, ith row of L up to i-l)I (where (.,.) is a complex dot product)

< mmax + Ilkth row of L up to i-Ill 1jth row of L up to i-Ill

(by Cauchy Schwartz, where I" I = vector norm)

< mmax + Ilkth row of LII. IIjth row of LII

M2 4T r

max lkr

-mmax +' Wi 7j. < max +max =2max'

proving Eq. (G-2d). To see that Eq. (G-2c) is sharp and (G-2d) is sharp

to within a factor of 2, consider the matrix

174

!'

a-b

for 0 <b ~<a.
Finally, werov

Finally, we prove

k/k mma
1wk IZ(k) Zk(k)l < X (G-2e)

~min

k 2
Since mkk we have Ik rI <*f-

rl we kr - max

Also, 1wkj I = kk mmax ma x since d >- X To see that

Q jk k- k - xi nk- min se*ha

this bound is sharp to within a factor of 2, consider

14: 11 lo for large a;

so m 2, ma 2a.
min 2 mmax X 2

2a min

Next 4e consider the version of the algorithm without square roots
LI

when sample vectors ar: used to compute the w. s. We denote the inter-
13

mediate resuits by Z'j(k) to distinguish them from the Z-(k) above, when33

the actual matrix was used. We interpret the inputs Z (k) as Gaussian

random variables with zero means and covariance matrix M, and compute the
Ii

distributions of the Z.(k) which are functions of the Zl(k). The actual
i

distributions of the Z.(k) are too complicated to compute exactly, but we

175

make the approximation of replacing the w..'s by their means as soon as

they are computed. When the number of samples is large, this is an ex-

cellent approximation. (For other properties of these distributions, see

[Rao 1965].) It is in fact possible to write down the exact distribution

of the wij's, see Rao, p. 508. With this approximation we note that

Z1 (k) is a linear combination of the input random variables, and hence

is Gaussian with zero mean. If we compute its variance, then we will know

the distribution of its possible values and hence how many bits are re-

quired to represent it.

We now prove

var[Zi(k)] = Z1 (j) (G-3a)J 3

where Z!(j) is computed as though the actual matrix were being passed3

through. Thus Xmin < var[Z' (k)] < mmax , using the results of the last

analysis.

In other words, after the random variables have passed through i

rows of the array, their variances equal the ith partial sums of the

expressions for d. Let V be the column vector of random variables, so

that E(VV*) M and E[(L-1 V)(L-IV)*] L- E(VV*)L -1 * = . Let Lm represent

the transformation performed by the first m rows. Then

6*

C.R. Rao, Linear Statistical Inference and Its Applications, New
York, John Wiley and Sons, 1965.

i

7,

176

-J

-WI

w13

L1 -Wi3

-wm 1l

+wIT~l 1W~

m+lm+2 L

w M+n W 'n- n 1 n1 1Wml

177

Partitioning L as

1

L= W12 0
Wl2

w 1 1

lm ** " mm l w ~ m 2r

L=L
Wm+Im+2

Wln Wn Wm+ln l

and D as

d1

0

00

dm
D =

d m+l D D2

d
L- ~ nl

we see we can write

L_m = Lj1

0 L 2

178

so Mm E[(L_m V)(L_m V)*] = Lm M L m

: L-I LDL* L-

2 L2

0 L2D Li

It is the diagonal elements of Mm that are our answers. The first m diagonal

elements are obviously equal to their final values. Now M = LDL*

1L1 0 1 D 1 :I [LIDi L 1 Li D 1A

[A L 0[D-1 1 0 L AD1 L1 AD1 A +L D L

Hence

(*) (L2D2L)iJ = (ADIA + L2D2 2) ij (AD1A)ij

m

= - r- -ir-jr dr

Set i=j and we get the desired result.

Next we prove that w.. is approximately Gaussian with mean

* 4 E(wij) Z'(i); so JE(wij. 1 < m and variance
. 3 -~ max

179

var(wi.) (Zi(i) Zj(j) + Iz ()I)
(i- 1 i-d d r1s i • mjj-r-- + mij E r=l jr

< 2 max/S (G-3b)

If Q, and Q are normal with covariance matrix [m 11 m212] , it is easy to see

EIAA 2 = m and va(I mH 212 + 2
2 varQ 2 = m, m22 + m 2 m21. Since linear combinations

of multivariate Gaussian random variables are multivariate Gaussian, we need
only find out what the variances and covariances are of the variables used to
form wij. We approximate w i as Gaussian by the central limit theorem. They

are given by (*) with m=i, and this is our result. The 1/S factor is used
to cancel one of the S factors "concealed" in imax Since w1 - N(lj,a 2) with

Ii~I < m max and a < 2mmax/S we have

t)
P(Iwijl > 2t m max) = P(wij 5_ 2t) + <- tmmax) P(wij <_2 mmax

P = >_ mx1 + p i- < max +_.maxax max - mmax S max

< [(0,1) > 2tm max-mmax -N2tmmax+maxj

Smmax _1mmax

i/ ! P N(0,1) >_ T2-(2t-,) + P N(0,1)5_ S (T -)

. 180

- ------- -

P (0,1 > (~2t -1)1

w is approximately Xwith S degrees of freedom, mean

E~w Z'i), JE(w~) x and variance

var(w,.< 2m2 /S (G-3c)

Since E(z. .) = var[Z'j (i)], the proof of the first part is easy.

Recalling that the expectation of the fourth power of a standard normal

variable is 3, we obtain var(.. 2 var2 [Z' i /1S < 2 m 2 /iS.

Thus

P(~j>2 t) Pw. S > 2tS) p(X2 < 2tS)
mma) Pzlj mmax

Appendix H

SAMPLE VOLTAGE VECTOR MODEL

To determine if the sample covariance matrix approach is teasible when

N, the number of weights, is at least 200, we had to use a model of the sample

voltage vectors to write a computer simulation to test the algorithm and its

implementation.

The radar test problem is arranged so that the interferers can be

specified by their eigenvalues. To do this simply, a linear antenna array

with uniform spacing and weighting was chosen. With this configuration it is

easy to form multiple beams and place an interferer in each beam so that each

beam output contains only power from that interferer. Since each beam output

is then independent, the covariance matrix of the beam output is diagonal and
the interferer powers are the eigenvalues. It is easy to transform the

problem to element space, using a unitary transformation.

To implement this approach, the interferers are placed so that all

except one are at nulls of the beam pattern for each beam. The voltage

output of a beam formed by summing all element outputs is given by

Xb = 11 + e
i .. +ei(N-l)]

_ sin N(p/2)

-"sin p/2

where

=27D sin 0,

e = an angle measured from the boresight of the antenna to a point
source, and

D = the antenna element separation in wavelengths.

If interferer positions are chosen so that sin [N(n - m)/2] = 0 for n $ m,n - m
they satisfy the condition for independence. This will be true when

182

N/2(On - m) = k7, where k is an integer. The desired interferer positions

are, therefore,

k2N , k l1...,N-I (H-I)

In element space the voltage at each of N elements is given by

K i2Tk(N-l)

Xn L RkVk e +(n • Rn (H-2)
k=1

for the K = N-1 interferers. The Ak are the powers in each interferer and the

R's are independent zero-mean random variables with ki12 = 1. The Rk are

included, when needed, to simulate the interferer variations between samples,

and receiver noise whose power is Qn"

Since the interferer positions are known, the true covariance matrix

can be computed as

__ K ei[27k/N(m-n)] (H-3)

Mmn =XX n i/ K Ak

A stochastic sample covariance matrix using S samples can be obtained

by forming

S
Mm,n =1/S X* X (H-4)

where the voltages are obtained from Eq. (H-2).

With this model the eigenvalues Ak can be chosen to span any desired

range of values, and the number of interferers can be varied up to N-1 while

one specifies the eigenvalues.

183

MISSION
Of

Romw Air Development Center
RADC ptanz and execwueA te~secvch, devetopment, 'tez6t and
4~etected acquisition p'trn i~n .6ppo,%t oj Command, ContwLf

* Communications and Inteigence (C31) activitiz. TechnicaI
and enginee~ing suppotta within au"a~ o -technvicai competence
iz p'tovided to ESV Pt'og~tam 06 ice4 (PO.5) and otite't ESV
etemen.C. The ptincwipai technica miza-'z eas cte
communication4, eZectomagnetic guidance and con-t't, swt4-
vetance 06 ytound and aetozpace ob -ject6, LnteZ&9ence data
cotiection and hand~nq, in~o~unation .6yq6tem technotogy,iono,6pheic p~opagation, sotid st.ate sciences, rnictowavephyq6ic6 and eectonic %tiabiZi&ty, mainainbi2Zty and

* compatibicZiay.

fz

DATE-

,ILM..ED

